Suppr超能文献

正常及短期去神经支配大鼠快肌中的阳离子运动

Cation movements in normal and short-term denervated rat fast twitch muscle.

作者信息

Robbins N

出版信息

J Physiol. 1977 Oct;271(3):605-24. doi: 10.1113/jphysiol.1977.sp012017.

Abstract
  1. The earliest known change in rat fast muscle following denervation is a fall in resting membrane potential unaccompanied by change in membrane resistance. The present study tested the hypothesis that increased Na permeability (P(Na)) accounted for this early depolarization.2. In all experiments, rat extensor digitorum longus muscles were studied in vitro at 25 degrees C. Li uptake in vitro, used as a measure of P(Na), was greater in 1- and 2-day denervated muscles (and in 2-day denervated diaphragm) than in paired controls.3. The extra Li taken up by denervated muscle was not sequestered in an extracellular or freely exchangeable compartment, nor was it irreversibly bound.4. Measurements of resting membrane potential and of internal Na, K, and Li in Krebs solution before and 2 hr after replacement of NaCl by LiCl, were used to compute the ratios P(Na)/P(K) and P(Li)/P(K) for normal or denervated muscles. P(Na) and P(Li) were similar relative to P(K) within each class of muscle.5. Both P(Na)/P(K) and P(Li)/P(K) ratios were elevated more than twofold in denervated muscle, as were most estimates of relative P(Li) approximated by the flux equation.6. These data, and measurement of resting membrane potential of normal muscle in 1 mM external K-Krebs solution, support the view that an electrogenic Na-K pump does not substantially contribute to this potential of normal or denervated muscle, and that the early depolarization after denervation results from increased P(Na).7. The Na-K pump of denervated muscle was as sensitive to ouabain as normal muscle. An effect of ouabain on P(Na) may explain previously noted differential effects of ouabain on normal and denervated muscle.
摘要
  1. 已知大鼠快肌去神经支配后最早出现的变化是静息膜电位下降,而膜电阻无变化。本研究检验了以下假说:钠通透性(P(Na))增加是这种早期去极化的原因。

  2. 在所有实验中,大鼠趾长伸肌在25℃下进行体外研究。体外锂摄取量用作P(Na)的指标,在去神经支配1天和2天的肌肉(以及去神经支配2天的膈肌)中比配对对照组更高。

  3. 去神经支配的肌肉摄取的额外锂并非隔离在细胞外或可自由交换的区室中,也不是不可逆结合的。

  4. 在将NaCl替换为LiCl之前和之后2小时,测量克雷布斯溶液中静息膜电位以及细胞内钠、钾和锂的含量,用于计算正常或去神经支配肌肉的P(Na)/P(K)和P(Li)/P(K)比值。每类肌肉中,相对于P(K),P(Na)和P(Li)相似。

  5. 去神经支配的肌肉中,P(Na)/P(K)和P(Li)/P(K)比值均升高了两倍多,通量方程估算的相对P(Li)的大多数值也是如此。

  6. 这些数据,以及在1 mM细胞外钾 - 克雷布斯溶液中对正常肌肉静息膜电位的测量,支持以下观点:生电钠 - 钾泵对正常或去神经支配肌肉的这种电位没有实质性贡献,去神经支配后的早期去极化是由P(Na)增加引起的。

  7. 去神经支配肌肉的钠 - 钾泵对哇巴因的敏感性与正常肌肉相同。哇巴因对P(Na)的影响可能解释了先前观察到的哇巴因对正常和去神经支配肌肉的不同作用。

相似文献

1
Cation movements in normal and short-term denervated rat fast twitch muscle.
J Physiol. 1977 Oct;271(3):605-24. doi: 10.1113/jphysiol.1977.sp012017.
2
Contribution of an electrogenic sodium pump to membrane potential in mammalian skeletal muscle fibres.
J Physiol. 1975 Mar;245(3):499-520. doi: 10.1113/jphysiol.1975.sp010858.
3
The interaction of lithium ions with the sodium-potassium pump in frog skeletal muscle.
J Physiol. 1975 Mar;246(2):397-420. doi: 10.1113/jphysiol.1975.sp010896.
4
Role of sodium and potassium permeabilities in the depolarization of denervated rat muscle fibres.
J Physiol. 1987 Nov;392:301-13. doi: 10.1113/jphysiol.1987.sp016781.
6
Neural regulation on the active sodium-potassium transport in hypokalaemic rat skeletal muscles.
J Physiol. 1983 Aug;341:245-55. doi: 10.1113/jphysiol.1983.sp014804.
8
The membrane potential of rat diaphragm muscle fibres and the effect of denervation.
J Physiol. 1976 Mar;255(3):651-67. doi: 10.1113/jphysiol.1976.sp011301.
10
Sodium influx during action potential in innervated and denervated rat skeletal muscles.
Muscle Nerve. 2001 Aug;24(8):1026-33. doi: 10.1002/mus.1106.

引用本文的文献

1
Small-conductance calcium-activated potassium currents in mouse hyperexcitable denervated skeletal muscle.
J Physiol. 2001 Oct 15;536(Pt 2):397-407. doi: 10.1111/j.1469-7793.2001.0397c.xd.
5
Control of muscle insulin receptors by the motor nerve.
Experientia. 1981 Mar 15;37(3):286-7. doi: 10.1007/BF01991658.
6
Ionic currents and charge movements in organ-cultured rat skeletal muscle.
J Physiol. 1984 Dec;357:369-86. doi: 10.1113/jphysiol.1984.sp015505.
7
Cellular ions in intact and denervated muscles of the rat.
J Membr Biol. 1984;81(1):19-27. doi: 10.1007/BF01868806.
8
Physiological basis of a steady endogenous current in rat lumbrical muscle.
J Gen Physiol. 1984 Feb;83(2):175-92. doi: 10.1085/jgp.83.2.175.
9
Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres.
J Physiol. 1980 Sep;306:377-410. doi: 10.1113/jphysiol.1980.sp013403.
10
Induction of action potentials by denervation of tonic fibres in rat extraocular muscles.
J Physiol. 1986 May;374:165-78. doi: 10.1113/jphysiol.1986.sp016073.

本文引用的文献

1
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
2
The permeability of frog muscle fibres to lithium ions.
J Physiol. 1959 Oct;147(3):626-38. doi: 10.1113/jphysiol.1959.sp006265.
3
Membrane constants of mammalian muscle fibres.
J Physiol. 1959 Oct;147(3):450-7. doi: 10.1113/jphysiol.1959.sp006255.
4
[Potassium flux of normal and denervated rat diaphragm].
Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:761-75.
6
Effect of cooling on neuromuscular transmission in the rat.
Am J Physiol. 1958 Jul;194(1):200-6. doi: 10.1152/ajplegacy.1958.194.1.200.
8
Sodium movements in denervated muscle and the effects of antimycin A.
J Physiol. 1968 Jul;197(2):279-94. doi: 10.1113/jphysiol.1968.sp008559.
9
Sodium fluxes in diaphragm muscle and the effects of insulin and serum proteins.
J Physiol. 1968 Jul;197(2):255-78. doi: 10.1113/jphysiol.1968.sp008558.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验