Suppr超能文献

改进的基于公共线的二十面体粒子图像方向估计算法。

Improved common line-based icosahedral particle image orientation estimation algorithms.

作者信息

Thuman-Commike P A, Chiu W

机构信息

Department of Computational and Applied Mathematics, W. M. Keck Center for Computational Biology, Rice University, Houston, TX 77005-1892, USA.

出版信息

Ultramicroscopy. 1997 Aug 1;68(4):231-55. doi: 10.1016/s0304-3991(97)00033-8.

Abstract

Modifications are described for the center and angular parameter estimation algorithms of common line-based particle image orientation determination which is an essential step in the three-dimensional reconstruction of icosahedral virus particles. The modifications incorporate a variety of image processing, pattern recognition, and statistical tools resulting in objective and automated orientation estimation algorithms. The modified algorithms were tested using electron cryo-microscopic particle images of three different virus specimens, with sizes 400-1250 A in diameter, covering a broad range of defocus values. Evaluation of these modified algorithms shows significant improvement over the previous algorithms. The center and angular parameters were estimated with higher accuracy allowing the identification of a larger number of particle orientations. Usage of the modified estimation algorithms resulted in the identification of particle orientations which could not to be identified using the algorithms before modification. Furthermore, these improvements have resulted in the determination of a better quality and a higher resolution three-dimensional reconstruction. The improved algorithms have been developed into a software package which can be obtained via the world wide web at http://ncmi.bioch.bcm.tmc.edu/pthuman.

摘要

描述了对基于公共线的粒子图像方向确定的中心和角度参数估计算法的修改,这是二十面体病毒粒子三维重建中的关键步骤。这些修改纳入了各种图像处理、模式识别和统计工具,从而产生了客观且自动化的方向估计算法。使用直径为400 - 1250埃的三种不同病毒标本的电子冷冻显微镜粒子图像对修改后的算法进行了测试,这些图像涵盖了广泛的散焦值范围。对这些修改后的算法的评估表明,与之前的算法相比有显著改进。中心和角度参数的估计精度更高,从而能够识别更多的粒子方向。使用修改后的估计算法能够识别使用修改前的算法无法识别的粒子方向。此外,这些改进使得能够确定质量更好、分辨率更高的三维重建。改进后的算法已被开发成一个软件包,可通过万维网在http://ncmi.bioch.bcm.tmc.edu/pthuman获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验