Suppr超能文献

Vasodilation and glomerular binding of adrenomedullin in rabbit kidney are not CGRP receptor mediated.

作者信息

Hjelmqvist H, Keil R, Mathai M, Hübschle T, Gerstberger R

机构信息

Max-Planck Institute for Physiological and Clinical Research, W. G. Kerckhoff Institute, Bad Nauheim, Germany.

出版信息

Am J Physiol. 1997 Aug;273(2 Pt 2):R716-24. doi: 10.1152/ajpregu.1997.273.2.R716.

Abstract

The polypeptide adrenomedullin (ADM) was infused systemically to conscious rabbits to elucidate its actions on overall circulation and especially the renovascular bed and the formation and/or release of hormones important for body fluid homeostasis, including adrenocortical steroids. ADM lowered mean arterial pressure from 71.5 +/- 3.2 to 64.7 +/- 3.2 mmHg only at the highest dose of 25 pmol.min-1.kg-1 infused intravenously for 20 min and concomitantly induced tachycardia, possibly due to both baroreflex activation and direct cardiostimulatory effects. Renal blood flow (RBF) determined in rabbits chronically equipped with a perivascular ultrasonic flow probe increased from 55.4 +/- 2.1 to 67.4 +/- 2.7 and from 58.2 +/- 3.5 to 75.2 +/- 6.0 ml/min at ADM infusions of 5 and 25 pmol.min-1.kg-1, respectively. The elevation in RBF persisted even in the presence of the calcitonin gene-related peptide (CGRP1 receptor antagonist CGRP-(8-37). Of all osmoregulatory hormones tested, only corticosterone (Cort) plasma concentration increased in response to the highest ADM dose from 17.6 +/- 3.1 to 38.9 +/- 6.2 ng/ml, probably due to haroreflex activation. Subdepressor doses of ADM, however, caused a mild reduction in circulating Cort. Expression of functional high-affinity binding sites specific for ADM in vitro could be demonstrated for the renal artery and outer cortical glomeruli using 125I-labeled rat ADM as radioligand and determination of cellular adenosine 3',5'-cyclic monophosphate (cAMP) formation within the glomeruli. The ineffectiveness of CGRP-(8-37) to displace radiolabeled ADM from its binding sites, to inhibit ADM-induced glomerular cAMP formation, and to prevent ADM-induced renal vasodilation supports the hypothesis of ADM altering renal hemodynamics by interacting with ADM- and not CGRP-specific membrane receptors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验