Chen Y C, Galpern W R, Brownell A L, Matthews R T, Bogdanov M, Isacson O, Keltner J R, Beal M F, Rosen B R, Jenkins B G
Department of Radiology, Massachusetts General Hospital, USA.
Magn Reson Med. 1997 Sep;38(3):389-98. doi: 10.1002/mrm.1910380306.
The metabolic activation resulting from direct dopaminergic stimulation can be detected using auto-radiography, positron emission tomography (PET) or, potentially, fMRI techniques. To establish the validity of the latter possibility, we have performed a number of experiments. We measured the regional selectivity of two different dopaminergic ligands: the dopamine release compound D-amphetamine and the dopamine transporter antagonist 2 beta-carbomethoxy-3 beta-(4-fluoropheny) tropane (CFT). Both compounds led to increased signal intensity in gradient echo images in regions of the brain with high dopamine receptor density (frontal cortex, striatum, cingulate cortex > > parietal cortex). Lesioning the animals with unilaterally administered 6-hydroxydopamine (6-OHDA) led to ablation of the phMRI response on the ipsilateral side; control measurements of rCBV and rCBF using bolus injections of Gd-DTPA showed that the baseline rCBV and rCBF values were intact on the lesioned side. The time course of the BOLD signal changes paralleled the changes observed by microdialysis measurements of dopamine release in the striatum for both amphetamine and CFT; peaking at 20-40 min after injection and returning to baseline at about 70-90 min. Signal changes were not correlated with either heart rate, blood pressure or pCO2. Measurement of PET binding in the same animals showed an excellent correlation with the phMRI data when compared by either measurements of the number of pixels activated or percent signal change in a given region. The time course for the behavioral measurements of rotation in the 6-OHDA lesioned animals correlated with the phMRI. These experiments demonstrate that phMRI will become a valuable, noninvasive tool for investigation of neurotransmitter activity in vivo.
通过直接多巴胺能刺激产生的代谢激活可以使用自动放射成像、正电子发射断层扫描(PET)或者可能的功能磁共振成像(fMRI)技术来检测。为了确定后一种可能性的有效性,我们进行了一系列实验。我们测量了两种不同多巴胺能配体的区域选择性:多巴胺释放化合物D-苯丙胺和多巴胺转运体拮抗剂2β-甲氧羰基-3β-(4-氟苯基)托烷(CFT)。两种化合物都导致多巴胺受体密度高的脑区(额叶皮质、纹状体、扣带回皮质>>顶叶皮质)的梯度回波图像中信号强度增加。用单侧注射6-羟基多巴胺(6-OHDA)损伤动物会导致同侧phMRI反应消失;使用大剂量注射钆喷酸葡胺(Gd-DTPA)对rCBV和rCBF进行对照测量表明,损伤侧的基线rCBV和rCBF值完好无损。对于苯丙胺和CFT,BOLD信号变化的时间进程与纹状体中多巴胺释放的微透析测量结果所观察到的变化平行;在注射后20 - 40分钟达到峰值,并在大约70 - 90分钟时恢复到基线。信号变化与心率、血压或pCO2均无相关性。在同一动物中进行的PET结合测量显示,与phMRI数据相比(通过测量激活的像素数量或给定区域的信号变化百分比)具有极好的相关性。6-OHDA损伤动物旋转行为测量的时间进程与phMRI相关。这些实验表明,phMRI将成为一种有价值的、用于体内神经递质活性研究的非侵入性工具。