Li Calzi M, Poole L B
Department of Biochemistry, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157, USA.
Biochemistry. 1997 Oct 28;36(43):13357-64. doi: 10.1021/bi9713660.
AhpF, the alkyl hydroperoxide reductase component which transfers electrons from pyridine nucleotides to the peroxidase protein, AhpC, possesses two redox-active disulfide centers in addition to one FAD per subunit; the primary goal of these studies has been to test for the requirement of one or both of these disulfide centers in catalysis. Two half-cystine residues of one center (Cys345Cys348) align with those of the homologous Escherichia coli thioredoxin reductase (TrR) sequence (Cys135Cys138), while the other two (Cys129Cys132) reside in the additional N-terminal region of AhpF which has no counterpart in TrR. We have employed site-directed mutagenesis techniques to generate four mutants of AhpF, including one which removes the N-terminal disulfide (Ser129Ser132) and three which perturb the TrR-like disulfide center (Ser345Ser348, Ser345Cys348, and Cys345Ser348). Fluorescence, absorbance, and circular dichroism spectra show relatively small perturbations for mutations at the disulfide center proximal to the flavin (Cys345Cys348) and no changes for the Ser129Ser132 mutant; identical circular dichroism spectra in the ultraviolet region indicate unchanged secondary structures in all mutants studied. Oxidase and transhydrogenase activities are preserved in all mutants, indicating no role for cystine redox centers in these activities. Both DTNB and AhpC reduction by AhpF are dramatically affected by each of these mutations, dropping to less than 5% for DTNB reductase activity and to less than 2% for peroxidase activity in the presence of AhpC. Reductive titrations confirm the absence of one redox center in each mutant; even in the absence of Cys345Cys348, the N-terminal redox center can be reduced, although only slowly. These results emphasize the necessity for both redox-active disulfide centers in AhpF for catalysis of disulfide reductase activity and support a direct role for Cys129Cys132 in mediating electron transfer between Cys345Cys348 and the AhpC active-site disulfide.
烷基过氧化氢还原酶组分AhpF可将电子从吡啶核苷酸转移至过氧化物酶蛋白AhpC,每个亚基除含有一个黄素腺嘌呤二核苷酸(FAD)外,还拥有两个具有氧化还原活性的二硫键中心;这些研究的主要目的是测试催化过程中这两个二硫键中心中一个或两个的必要性。其中一个中心的两个半胱氨酸残基(Cys345Cys348)与同源的大肠杆菌硫氧还蛋白还原酶(TrR)序列中的半胱氨酸残基(Cys135Cys138)对齐,而另外两个(Cys129Cys132)位于AhpF额外的N端区域,该区域在TrR中没有对应部分。我们采用定点诱变技术生成了AhpF的四个突变体,包括一个去除N端二硫键的突变体(Ser129Ser132)和三个扰乱类似TrR二硫键中心的突变体(Ser345Ser348、Ser345Cys348和Cys345Ser348)。荧光、吸光度和圆二色光谱显示,黄素附近二硫键中心(Cys345Cys348)的突变引起的扰动相对较小,而Ser129Ser132突变体则没有变化;所有研究突变体在紫外区域相同的圆二色光谱表明其二级结构未改变。所有突变体均保留了氧化酶和转氢酶活性,表明二硫键氧化还原中心在这些活性中不起作用。AhpF对5,5'-二硫代双(2-硝基苯甲酸)(DTNB)和AhpC的还原均受到这些突变的显著影响,在存在AhpC的情况下,DTNB还原酶活性降至不到5%,过氧化物酶活性降至不到2%。还原滴定证实每个突变体中都不存在一个氧化还原中心;即使没有Cys345Cys348,N端氧化还原中心也可以被还原,尽管速度很慢。这些结果强调了AhpF中两个具有氧化还原活性的二硫键中心对于二硫键还原酶活性催化的必要性,并支持Cys129Cys132在介导Cys345Cys348与AhpC活性位点二硫键之间的电子转移中起直接作用。