Arndt S, Cizadlo T, O'Leary D, Gold S, Andreasen N C
Department of Psychiatry, University of Iowa, Iowa City 52242-1057, USA.
Neuroimage. 1996 Jun;3(3 Pt 1):175-84. doi: 10.1006/nimg.1996.0019.
Image intensity normalization is frequently applied to eliminate or adjust for subject or injection global blood flow (gCBF) and other sources of nuisance variation. Normalization has several other positive effects on the analysis of PET images. However, the choice of an intensity normalization technique affects the statistical and psychometric properties of the image data. We compared three normalization procedures, the ratio approach (regional (r)CBF/gCBF), histogram equalization, and ANCOVA, on both PET count and flow data sets. The ratio method presents the proportional increase of regions, the histogram equalization method offers the relative ranking of intensities over the image, and the ANCOVA method provides statistical deviations from an expected linear model of regional values from the subject's gCBF. The original study used 33 normal subjects in a standard subtraction paradigm. The normalization methods were evaluated on their ability to remove extraneous error variation, induce homogeneity of intersubject variation, and remove unwanted dependencies. In general, the normalization modified the subtraction image more than the individual condition images. All three methods worked well at removing the dependency of rCBF on gCBF in count and flow images. For count data, the three methods also reduced the amount of error variation equally well, improving the signal to noise ratio. For flow data, the histogram equalization and ratio methods worked best at reducing statistical error. All three methods dramatically stabilized the variance over the image.
图像强度归一化经常被用于消除或调整个体差异或注射全局血流量(gCBF)以及其他干扰性变异来源。归一化对PET图像分析还有其他几个积极作用。然而,强度归一化技术的选择会影响图像数据的统计和心理测量属性。我们在PET计数和血流数据集上比较了三种归一化程序,即比率法(局部(r)CBF/gCBF)、直方图均衡化和协方差分析。比率法呈现区域的比例增加,直方图均衡化方法提供图像上强度的相对排序,而协方差分析方法提供与基于个体gCBF的区域值预期线性模型的统计偏差。原始研究在标准减法范式中使用了33名正常受试者。对归一化方法在去除无关误差变异、诱导个体间变异同质性以及消除不必要相关性方面的能力进行了评估。总体而言,归一化对减法图像的修改比对个体条件图像的修改更大。所有三种方法在去除计数和血流图像中rCBF对gCBF的依赖性方面都表现良好。对于计数数据,这三种方法在减少误差变异量方面同样有效,提高了信噪比。对于血流数据,直方图均衡化和比率法在减少统计误差方面效果最佳。所有三种方法都极大地稳定了图像上的方差。