Wada D R
Math Biosci. 1997 Dec;146(2):75-88. doi: 10.1016/s0025-5564(97)00076-x.
In automatic feedback control of intravenous drug infusions, convergence to the setpoint is an important objective. This paper examines the stability of pharmacokinetic-pharmacodynamic models of patient response regulated with proportional integral feedback. The model consists of three components: linear compartmental pharmacokinetics, a first-order lag, and sigmoidal static pharmacodynamics. The permitted pharmacokinetic models obey the principle of detailed balance and admit drug administration into and sampling from the same compartment. Convergence to the setpoint occurs if the reset time of the controller is greater than the maximum possible time constant of the first-order lag. The convergence analysis uses standard Popov stability theory and takes advantage of the little known fact that many pharmacokinetic models possess poles and zeros that alternate on the negative real axis.
在静脉药物输注的自动反馈控制中,收敛到设定点是一个重要目标。本文研究了采用比例积分反馈调节的患者反应的药代动力学 - 药效学模型的稳定性。该模型由三个部分组成:线性房室药代动力学、一阶滞后和S形静态药效学。允许的药代动力学模型遵循详细平衡原理,并允许在同一房室中进行药物给药和采样。如果控制器的重置时间大于一阶滞后的最大可能时间常数,则会收敛到设定点。收敛性分析使用标准的波波夫稳定性理论,并利用了许多药代动力学模型在负实轴上具有交替极点和零点这一鲜为人知的事实。