Suppr超能文献

蓝藻tRNA基因中I组内含子的起源与进化

Origin and evolution of group I introns in cyanobacterial tRNA genes.

作者信息

Paquin B, Kathe S D, Nierzwicki-Bauer S A, Shub D A

机构信息

Department of Biological Sciences and Center for Molecular Genetics, University at Albany-SUNY, New York 12222, USA.

出版信息

J Bacteriol. 1997 Nov;179(21):6798-806. doi: 10.1128/jb.179.21.6798-6806.1997.

Abstract

Many tRNA(Leu)UAA genes from plastids contain a group I intron. An intron is also inserted in the same gene at the same position in cyanobacteria, the bacterial progenitors of plastids, suggesting an ancient bacterial origin for this intron. A group I intron has also been found in the tRNA(fMet) gene of some cyanobacteria but not in plastids, suggesting a more recent origin for this intron. In this study, we investigate the phylogenetic distributions of the two introns among cyanobacteria, from the earliest branching to the more derived species. The phylogenetic distribution of the tRNA(Leu)UAA intron follows the clustering of rRNA sequences, being either absent or present in clades of closely related species, with only one exception in the Pseudanabaena group. Our data support the notion that the tRNA(Leu)UAA intron was inherited by cyanobacteria and plastids through a common ancestor. Conversely, the tRNA(fMet) intron has a sporadic distribution, implying that many gains and losses occurred during cyanobacterial evolution. Interestingly, a phylogenetic tree inferred from intronic sequences clearly separates the different tRNA introns, suggesting that each family has its own evolutionary history.

摘要

许多来自质体的tRNA(Leu)UAA基因含有一个I组内含子。在质体的细菌祖先蓝细菌中,同一基因的相同位置也插入了一个内含子,这表明该内含子起源于古老的细菌。在一些蓝细菌的tRNA(fMet)基因中也发现了I组内含子,但在质体中未发现,这表明该内含子起源较晚。在本研究中,我们调查了这两种内含子在蓝细菌中的系统发育分布,涵盖了从最早分支到较进化物种的范围。tRNA(Leu)UAA内含子的系统发育分布与rRNA序列的聚类情况一致,在亲缘关系密切的物种分支中要么不存在,要么存在,仅在伪鱼腥藻属中有一个例外。我们的数据支持这样一种观点,即tRNA(Leu)UAA内含子是蓝细菌和质体通过共同祖先遗传而来的。相反,tRNA(fMet)内含子具有零星分布,这意味着在蓝细菌进化过程中发生了许多次获得和丢失事件。有趣的是,从内含子序列推断出的系统发育树清楚地将不同的tRNA内含子区分开来,这表明每个家族都有其自己的进化历史。

相似文献

1
Origin and evolution of group I introns in cyanobacterial tRNA genes.
J Bacteriol. 1997 Nov;179(21):6798-806. doi: 10.1128/jb.179.21.6798-6806.1997.
2
Complex evolutionary patterns of tRNA Leu(UAA) group I introns in the cyanobacterial radiation [corrected].
J Bacteriol. 1999 Jun;181(11):3445-51. doi: 10.1128/JB.181.11.3445-3451.1999.
3
Cyanobacterial tRNA(Leu)(UAA) group I introns have polyphyletic origin.
FEMS Microbiol Lett. 1997 Nov 15;156(2):293-8. doi: 10.1016/s0378-1097(97)00446-1.
4
8
An ancient group I intron shared by eubacteria and chloroplasts.
Science. 1990 Dec 14;250(4987):1570-3. doi: 10.1126/science.2125748.
10
Self-splicing introns in tRNA genes of widely divergent bacteria.
Nature. 1992 May 14;357(6374):173-6. doi: 10.1038/357173a0.

引用本文的文献

1
Field investigations on cyanobacterial specificity in Peltigera aphthosa.
New Phytol. 2001 Oct;152(1):117-123. doi: 10.1046/j.0028-646x.2001.00234.x.
3
Structure and Phylogeny of the Curly Birch Chloroplast Genome.
Front Genet. 2021 Oct 4;12:625764. doi: 10.3389/fgene.2021.625764. eCollection 2021.
4
tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes.
Nucleic Acids Res. 2021 Sep 20;49(16):9077-9096. doi: 10.1093/nar/gkab688.
5
Lichen fungi have low cyanobiont selectivity in maritime Antarctica.
New Phytol. 2003 Oct;160(1):177-183. doi: 10.1046/j.1469-8137.2003.00859.x.
6
Phylogeny and evolution of chloroplast tRNAs in Adoxaceae.
Ecol Evol. 2021 Jan 6;11(3):1294-1309. doi: 10.1002/ece3.7133. eCollection 2021 Feb.
7
Genomic and evolutionary aspects of chloroplast tRNA in monocot plants.
BMC Plant Biol. 2019 Jan 22;19(1):39. doi: 10.1186/s12870-018-1625-6.
8
Novel Genomic and Evolutionary Perspective of Cyanobacterial tRNAs.
Front Genet. 2017 Dec 13;8:200. doi: 10.3389/fgene.2017.00200. eCollection 2017.
9
The essential gene set of a photosynthetic organism.
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6634-43. doi: 10.1073/pnas.1519220112. Epub 2015 Oct 27.
10
Evolution of the tRNALeu (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc.
PLoS One. 2015 Jun 22;10(6):e0131223. doi: 10.1371/journal.pone.0131223. eCollection 2015.

本文引用的文献

1
The Ribosomal Database Project (RDP).
Nucleic Acids Res. 1996 Jan 1;24(1):82-5. doi: 10.1093/nar/24.1.82.
2
Compilation of tRNA sequences and sequences of tRNA genes.
Nucleic Acids Res. 1996 Jan 1;24(1):68-72. doi: 10.1093/nar/24.1.68.
3
Introns as mobile genetic elements.
Annu Rev Biochem. 1993;62:587-622. doi: 10.1146/annurev.bi.62.070193.003103.
5
Complete sequence of Euglena gracilis chloroplast DNA.
Nucleic Acids Res. 1993 Jul 25;21(15):3537-44. doi: 10.1093/nar/21.15.3537.
6
fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood.
Comput Appl Biosci. 1994 Feb;10(1):41-8. doi: 10.1093/bioinformatics/10.1.41.
8
Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).
Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9916-20. doi: 10.1073/pnas.91.21.9916.
9
A comparative database of group I intron structures.
Nucleic Acids Res. 1994 Sep;22(17):3508-10. doi: 10.1093/nar/22.17.3508.
10
Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNA(Ile).
EMBO J. 1994 Oct 3;13(19):4636-44. doi: 10.1002/j.1460-2075.1994.tb06786.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验