Wragg S, Hagen F K, Tabak L A
Department of Dental Research, School of Medicine and Dentistry, University of Rochester, NY 14642, USA.
Biochem J. 1997 Nov 15;328 ( Pt 1)(Pt 1):193-7. doi: 10.1042/bj3280193.
UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases) catalyse the initial step of mucin-type O-glycosylation. The activity of bovine ppGaNTase-T1 isoenzyme was inhibited by diethyl pyrocarbonate (DEPC) modification. Activity was partially restored by hydroxylamine treatment, indicating that one of the reactive residues was a histidine. The transferase was protected against DEPC inactivation when UDP-GalNAc and EPO-G, a peptide pseudo-substrate PPDAAGAAPLR, were simultaneously present, while presence of EPO-G alone did not alter DEPC inactivation. However, inclusion of UDP-GalNAc alone potentiated DEPC-inhibition of the enzyme, suggesting that UDP-GalNAc binding changes the accessibility or reactivity of an essential histidine residue. Deletion of the first 56 amino acids (including one hisitidine residue) yielded a fully active secreted form of the bovine ppGaNTase-T1 enzyme. Each of the 14 remaining histidines in the enzyme were mutated to alanine, and the recombinant mutants were recovered from COS7 cells. The mutation of histidine residues His211-->Ala and His344-->Ala resulted in recombinant proteins with no detectable enzymic activity. A significant decrease in the initial rate of GalNAc transfer to the substrate was observed with mutants His125-->Ala and His341-->Ala (1% and 6% of wild-type activity respectively). Mutation of the remaining ten histidine residues yielded mutants that were indistinguishable from the wild-type enzyme. Mutagenesis and SDS/PAGE analysis of all N-glycosylation sequons revealed that positions N-95 and N-552 are occupied by N-linked sugars in COS7 cells. Ablation of either site did not perturb enzyme biosynthesis or enzyme activity.