Corzo J, Santamaria M, Gutierrez-Navarro A M
Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, Tenerife, Spain.
Biosci Rep. 1997 Aug;17(4):389-400. doi: 10.1023/a:1027357317291.
We present a model for the metabolic coupling between rhizobia and plant cell in the nitrogen-fixing legume root nodules. The symbiosome, an organelle-like structure formed by the modified rhizobia (the bacteroids) enclosed by a plant cell derived peribacteroid membrane, is an unique structure in which two energized membranes are closely packed: the inner bacteroid membrane and the peribacteroid membrane that possesses an ATPase proton pump. The model is based on the following points: (i) The permeability for hydrogen ions of the outer membrane of the rhizobia. (ii) The reversibility of the ATPase proton pump of the peribacteroid membrane [Szafran, M.M. and Haaker, H. (1995) Plant Physiol. 108, 1227-1232]. (iii) The relative affinites for oxygen of the bacteroid and plant mitochondria terminal oxidases, and the prevailing oxygen concentration inside the nodule, which results in aerobic metabolism for the bacteroid, but in quite fermentative catabolism for the host plant cell. We propose that the bacteroid can transiently supply free energy to the plant cell in the form of protonmotive force by the movement of hydrogen ions from the bacteroid periplasmic space to the plant cytoplasm through the peribacteroid membrane ATPase. The proposed hydrogen ion flux could be dependent on the phosphorylation potential in both the plant cell cytoplasm and the bacteroid, and the simultaneous ion movements to avoid the development of opposite delta psi. It could be important in situations of transient ATP depletion inside plant cell, which involves the block of ammonia assimilation and, subsequently, the inhibition of bacteroid nitrogenase.
我们提出了一个关于固氮豆科植物根瘤中根瘤菌与植物细胞之间代谢偶联的模型。共生体是一种细胞器样结构,由被植物细胞衍生的类周膜包围的经修饰的根瘤菌(类菌体)形成,是一种独特的结构,其中两个有能量的膜紧密排列:内部类菌体膜和具有ATPase质子泵的类周膜。该模型基于以下几点:(i)根瘤菌外膜对氢离子的通透性。(ii)类周膜ATPase质子泵的可逆性[Szafran, M.M.和Haaker, H.(1995年)植物生理学。108, 1227 - 1232]。(iii)类菌体和植物线粒体末端氧化酶对氧气的相对亲和力,以及根瘤内的主要氧气浓度,这导致类菌体进行有氧代谢,但宿主植物细胞进行相当程度的发酵分解代谢。我们提出,类菌体可以通过氢离子从类菌体周质空间通过类周膜ATPase移动到植物细胞质,以质子动力的形式向植物细胞短暂提供自由能。所提出的氢离子通量可能取决于植物细胞质和类菌体内的磷酸化电位,以及同时进行的离子移动以避免相反的膜电位差的产生。在植物细胞内短暂ATP耗尽的情况下,这可能很重要,这涉及氨同化的阻断,随后是类菌体固氮酶的抑制。