Suppr超能文献

内向整流钾通道(IRK1)孔区中的一个保守精氨酸残基作为阳离子阻滞剂的外部屏障。

A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers.

作者信息

Sabirov R Z, Tominaga T, Miwa A, Okada Y, Oiki S

机构信息

Department of Cellular and Molecular Physiology, National Institute for Physiological Sciences, Okazaki 444, Japan.

出版信息

J Gen Physiol. 1997 Dec;110(6):665-77. doi: 10.1085/jgp.110.6.665.

Abstract

The number, sign, and distribution of charged residues in the pore-forming H5 domain for inward-rectifying K channels (IRK1) are different from the otherwise homologous H5 domains of other voltage-gated K channels. We have mutated Arg148, which is perfectly conserved in all inward rectifiers, to His in the H5 of IRK1 (Kir2. 1). Channel activity was lost by the mutation, but coexpression of the mutant (R148H) along with the wild-type (WT) mRNA revealed populations of channels with reduced single-channel conductances. Long-lasting and flickery sublevels were detected exclusively for the coexpressed channels. These findings indicated that the mutant subunit formed hetero-oligomers with the WT subunit. The permeability ratio was altered by the mutation, while the selectivity sequence (K+ > Rb+ > NH4+ >> Na+) was preserved. The coexpression made the IRK1 channel more sensitive to extracellular block by Mg2+ and Ca2+, and turned this blockade from a voltage-independent to a -dependent process. The sensitivity of the mutant channels to Mg2+ was enhanced at higher pH and by an increased ratio of mutant:WT mRNA, suggesting that the charge on the Arg site controlled the sensitivity. The blocking rate of open channel blockers, such as Cs+ and Ba2+, was facilitated by coexpression without significant change in the steady state block. Evaluation of the electrical distance to the binding site for Mg2+ or Ca2+ and that to the barrier peak for block by Cs+ or Ba2+ suggest that Arg148 is located between the external blocking site for Mg2+ or Ca2+ and the deeper blocking site for Cs+ or Ba2+ in the IRK1 channel. It is concluded that Arg148 serves as a barrier to cationic blockers, keeping Mg2+ and Ca2+ out from the electric field of the membrane.

摘要

内向整流钾通道(IRK1)的孔形成H5结构域中带电残基的数量、符号和分布与其他电压门控钾通道中同源的H5结构域不同。我们将IRK1(Kir2.1)的H5结构域中在所有内向整流器中完全保守的精氨酸148突变为组氨酸。该突变导致通道活性丧失,但突变体(R148H)与野生型(WT)mRNA共表达时,发现了单通道电导降低的通道群体。仅在共表达的通道中检测到持久且闪烁的亚水平。这些发现表明突变亚基与WT亚基形成了异源寡聚体。突变改变了通透率,而选择性序列(K+>Rb+>NH4+>>Na+)得以保留。共表达使IRK1通道对Mg2+和Ca2+的细胞外阻断更敏感,并使这种阻断从电压非依赖性转变为电压依赖性过程。在较高pH值以及突变体:WT mRNA比例增加时,突变通道对Mg2+的敏感性增强,这表明精氨酸位点上的电荷控制着敏感性。共表达促进了开放通道阻滞剂(如Cs+和Ba2+)的阻断速率,而稳态阻断没有明显变化。对Mg2+或Ca2+结合位点以及Cs+或Ba2+阻断屏障峰的电距离评估表明,精氨酸148位于IRK1通道中Mg2+或Ca2+的外部阻断位点与Cs+或Ba2+的更深阻断位点之间。结论是,精氨酸148作为阳离子阻滞剂的屏障,使Mg2+和Ca2+远离膜的电场。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d6/2229401/fd757d81b68e/JGP.7554f1.jpg

相似文献

2
Molecular characterization of an inwardly rectifying K+ channel from HeLa cells.
J Membr Biol. 1999 Jan 1;167(1):43-52. doi: 10.1007/s002329900470.
4
Permeation properties of inward-rectifier potassium channels and their molecular determinants.
J Gen Physiol. 2000 Apr;115(4):391-404. doi: 10.1085/jgp.115.4.391.
5
A novel inward rectifier K+ channel with unique pore properties.
Neuron. 1998 May;20(5):995-1005. doi: 10.1016/s0896-6273(00)80480-8.
6
Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1.
Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8123-8. doi: 10.1073/pnas.93.15.8123.
7
Mechanism of the voltage sensitivity of IRK1 inward-rectifier K+ channel block by the polyamine spermine.
J Gen Physiol. 2005 Apr;125(4):413-26. doi: 10.1085/jgp.200409242. Epub 2005 Mar 14.
9
Carboxy-terminal determinants of conductance in inward-rectifier K channels.
J Gen Physiol. 2004 Dec;124(6):729-39. doi: 10.1085/jgp.200409166.
10
Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel.
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1568-72. doi: 10.1073/pnas.94.4.1568.

引用本文的文献

1
The unique structural characteristics of the Kir 7.1 inward rectifier potassium channel: a novel player in energy homeostasis control.
Am J Physiol Cell Physiol. 2023 Mar 1;324(3):C694-C706. doi: 10.1152/ajpcell.00335.2022. Epub 2023 Jan 30.
2
K -independent Kir blockade by external Cs and Ba.
Physiol Rep. 2022 Mar;10(5):e15200. doi: 10.14814/phy2.15200.
3
Cardiac potassium inward rectifier Kir2: Review of structure, regulation, pharmacology, and arrhythmogenesis.
Heart Rhythm. 2021 Aug;18(8):1423-1434. doi: 10.1016/j.hrthm.2021.04.008. Epub 2021 Apr 20.
4
Multiple residues in the p-region and m2 of murine kir 2.1 regulate blockage by external ba.
Korean J Physiol Pharmacol. 2009 Feb;13(1):61-70. doi: 10.4196/kjpp.2009.13.1.61. Epub 2009 Feb 28.
5
Specific and slow inhibition of the kir2.1 K+ channel by gambogic acid.
J Biol Chem. 2009 Jun 5;284(23):15432-8. doi: 10.1074/jbc.M901586200. Epub 2009 Apr 13.
6
Voltage- and [ATP]-dependent gating of the P2X(2) ATP receptor channel.
J Gen Physiol. 2009 Jan;133(1):93-109. doi: 10.1085/jgp.200810002.
7
Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
J Gen Physiol. 2006 Apr;127(4):401-19. doi: 10.1085/jgp.200509434. Epub 2006 Mar 13.
8
A ring of negative charges in the intracellular vestibule of Kir2.1 channel modulates K+ permeation.
Biophys J. 2005 Jan;88(1):243-54. doi: 10.1529/biophysj.104.052217. Epub 2004 Oct 29.
9
Ionic permeation and conduction properties of neuronal KCNQ2/KCNQ3 potassium channels.
Biophys J. 2004 Mar;86(3):1454-69. doi: 10.1016/S0006-3495(04)74214-9.

本文引用的文献

1
Inward rectifier potassium channels.
Annu Rev Physiol. 1997;59:171-91. doi: 10.1146/annurev.physiol.59.1.171.
2
Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel.
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1568-72. doi: 10.1073/pnas.94.4.1568.
3
Two-sided action of protons on an inward rectifier K+ channel (IRK1).
Pflugers Arch. 1997 Feb;433(4):428-34. doi: 10.1007/s004240050296.
5
Determination of the subunit stoichiometry of an inwardly rectifying potassium channel.
Neuron. 1995 Dec;15(6):1441-7. doi: 10.1016/0896-6273(95)90021-7.
9
Primary structure and functional properties of an epithelial K channel.
Am J Physiol. 1994 Mar;266(3 Pt 1):C809-24. doi: 10.1152/ajpcell.1994.266.3.C809.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验