Orokos D D, Travis J L
Department of Biological Sciences, University of Albany, State University of New York, 12222, USA.
Cell Motil Cytoskeleton. 1997;38(3):270-7. doi: 10.1002/(SICI)1097-0169(1997)38:3<270::AID-CM5>3.0.CO;2-9.
Reticulomyxa transports particulates, like bacterial and algal prey items, bidirectionally along the outside of its pseudopodia. This cell surface transport and intracellular organelle transport can be reactivated in detergent permeabilized cell models [Orokos et al., 1997: Cell Motil. Cytoskeleton]. We have used this unique system to compare cell surface and organelle mechanochemistry in situ in the same reactivated pseudopodia. The ATPase activities of both types of transport were indistinguishable; each displayed identical nucleoside triphosphate specificity, transport ATPase kinetics, and inhibitor sensitivity. Organelle and cell surface transport reactivation required "hydrolyzable" adenosine nucleoside triphosphates; neither reactivated with GTP, CTP, UTP, ITP, AMP-PNP, AMP-PCP, or ATP-gamma-S. However, other ATP analogues, such as 2'-deoxy-ATP and 3'-deoxy-ATP and 2',3'-dideoxy-ATP, supported the reactivation of organelle and cell surface transport at similar, but markedly reduced, velocities. Both transport processes were inhibited similarly by known inhibitors of dynein ATPases such as erythro-9-(3-[2-hydroxynonyl]) adenine (EHNA) or sodium (Na)-orthovanadate. N-ethylmaleimide (NEM) and ultraviolet (UV) irradiation in the presence of Na-orthovanadate and ATP permanently disabled both transport processes. Organelle and surface transport followed identical Michaelis-Menten kinetics with a calculated Km of 118 microM ATP and a maximum translocation velocity (Vmax) of 8.33 microm/sec. These findings strongly suggest that cell surface transport shares the same cytoplasmic dynein motor [Schliwa et al., 1991: J. Cell Biol. 112:1199-1203] that drives organelle transport.
网柱黏菌沿着其伪足外部双向运输颗粒物质,如细菌和藻类猎物。在去污剂通透处理的细胞模型中,这种细胞表面运输和细胞内细胞器运输可以被重新激活[奥罗科斯等人,1997年:《细胞运动与细胞骨架》]。我们利用这个独特的系统在相同的重新激活的伪足中原位比较细胞表面和细胞器的机械化学。两种运输类型的ATP酶活性没有区别;每种都表现出相同的核苷三磷酸特异性、运输ATP酶动力学和抑制剂敏感性。细胞器和细胞表面运输的重新激活需要“可水解的”腺苷核苷三磷酸;两者都不能被GTP、CTP、UTP、ITP、AMP-PNP、AMP-PCP或ATP-γ-S重新激活。然而,其他ATP类似物,如2'-脱氧-ATP、3'-脱氧-ATP和2',3'-二脱氧-ATP,以相似但明显降低的速度支持细胞器和细胞表面运输的重新激活。两种运输过程都受到已知的动力蛋白ATP酶抑制剂的类似抑制,如赤藓红-9-(3-[2-羟基壬基])腺嘌呤(EHNA)或偏钒酸钠。在偏钒酸钠和ATP存在的情况下,N-乙基马来酰亚胺(NEM)和紫外线(UV)照射会永久使两种运输过程失效。细胞器和表面运输遵循相同的米氏动力学,计算得出的ATP Km值为118微摩尔,最大转运速度(Vmax)为8.33微米/秒。这些发现有力地表明,细胞表面运输与驱动细胞器运输的是同一种细胞质动力蛋白[施利瓦等人,1991年:《细胞生物学杂志》112:1199-1203]。