Lin C H, Patel D J
Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
Chem Biol. 1997 Nov;4(11):817-32. doi: 10.1016/s1074-5521(97)90115-0.
Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution.
The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs.
The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.
通过体外筛选和扩增鉴定出的RNA和DNA适配体复合物的核磁共振(NMR)结构研究,提供了关于溶液中RNA和DNA三级结构以及分子识别的大量信息。以微摩尔亲和力靶向ATP(和AMP)的RNA和DNA适配体表现出不同的结合位点序列和二级结构。我们在下面报告溶液中AMP-DNA适配体复合物的三级结构,并将其与先前报道的溶液中AMP-RNA适配体复合物的三级结构进行比较。
令人惊讶的是,AMP-DNA适配体复合物的溶液结构显示,两个AMP分子插入到一个矩形加宽小沟内的相邻位点。复合物的形成涉及适应性结合,其中游离DNA适配体的不对称内部气泡通过形成一个连续的六碱基错配片段(包括一对相邻的三碱基平台)而拉链式结合。AMP分子通过其沃森-克里克边缘与鸟嘌呤残基的小沟边缘配对。这些识别性的G·A错配两侧是剪切的G·A和反向的Hoogsteen G·G错配。
AMP-DNA适配体和AMP-RNA适配体复合物具有不同的三级结构和结合化学计量。然而,两种复合物在其结合口袋中具有相似的结构特征和识别排列。具体而言,AMP通过插入嘌呤碱基之间并通过相同的G·A错配形成来靶向DNA和RNA适配体。在两种复合物中,识别性的G·A错配在一个方向上与反向的Hoogsteen G·G错配堆积,在另一个方向上与腺嘌呤碱基堆积。引人注目的是,在每种情况下从10¹⁴个分子文库中独立选择的DNA和RNA适配体,在包含共同结构元件的结合位点口袋内利用相同的错配排列进行微摩尔亲和力的分子识别。