Suppr超能文献

新生儿气管插管插入长度的快速估计

Rapid estimation of insertional length of endotracheal intubation in newborn infants.

作者信息

Shukla H K, Hendricks-Munoz K D, Atakent Y, Rapaport S

机构信息

New York University Medical Center, New York, USA.

出版信息

J Pediatr. 1997 Oct;131(4):561-4. doi: 10.1016/s0022-3476(97)70062-3.

Abstract

OBJECTIVE

To create a simple and accurate method of predicting the correct insertional length of endotracheal intubation during resuscitation of neonates.

STUDY DESIGN

Phase I of the study enrolled infants that required either orotracheal or nasotracheal intubations. The endotracheal tube position was confirmed by auscultation and radiographic images. Three regression equations were then created using nasal-tragus length, sternal length, and birth weight on insertional length. In phase II of the study, the modified regression equations of nasotracheal and sternal length were used to predict endotracheal tube insertional length in 50 infants (40 orotracheal and 10 nasotracheal).

RESULTS

Nasal-tragus length and sternal length are good parameters to estimate insertional length for endotracheal intubation (p < 0.005 for both the parameters). The modified prediction equation for insertional length of the endotracheal tube for the orotracheal route is NTL or STL + 1. For the nasotracheal route the equation is NTL or STL + 2.

CONCLUSION

During resuscitation of the neonate when vital parameters are difficult to obtain, the insertional length of endotracheal intubation can be quickly and accurately predicted by nasal-tragus length or sternal length.

摘要

目的

创建一种简单且准确的方法,用于预测新生儿复苏期间气管插管的正确插入长度。

研究设计

研究的第一阶段纳入了需要经口气管插管或经鼻气管插管的婴儿。通过听诊和影像学图像确认气管导管位置。然后使用鼻-耳屏长度、胸骨长度和出生体重与插入长度创建了三个回归方程。在研究的第二阶段,使用经鼻和胸骨长度的改良回归方程预测50例婴儿(40例经口气管插管和10例经鼻气管插管)的气管导管插入长度。

结果

鼻-耳屏长度和胸骨长度是估计气管插管插入长度的良好参数(两个参数的p均<0.005)。经口气管插管途径的气管导管插入长度的改良预测方程为鼻-耳屏长度或胸骨长度+1。经鼻气管插管途径的方程为鼻-耳屏长度或胸骨长度+2。

结论

在新生儿复苏过程中,当难以获得生命参数时,可通过鼻-耳屏长度或胸骨长度快速准确地预测气管插管的插入长度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验