Johnson B D, Dombroski A J
Department of Microbiology and Molecular Genetics, the University of Texas Health Science Center, Houston, Texas 77030, USA.
J Biol Chem. 1997 Dec 5;272(49):31029-35. doi: 10.1074/jbc.272.49.31029.
The sigma (sigma) subunit of prokaryotic RNA polymerase is required for specific recognition of promoter DNA sequences and transcription initiation. Regulation of gene expression can therefore be achieved by modulating the activity of the sigma subunit. In Bacillus subtilis the mother cell-specific sporulation sigma factor, sigmaK, is synthesized as a precursor protein, pro-sigmaK, with a 20-amino acid pro sequence. This pro sequence renders sigmaK inactive for directing transcription of sigmaK-dependent genes in vivo until the pro sequence is proteolytically removed. To understand the role of the pro sequence in controlling sigmaK activity, we have constructed NH2-terminal truncations of pro-sigmaK and characterized their behavior in vitro at the gerE promoter. In this report we show that the pro sequence inactivates sigmaK by interfering with the ability of sigmaK to associate with the core subunits of polymerase and also influences the interactions between holoenzyme and promoter DNA. Additionally, removal of as few as 6 amino acids (pro-sigmaKDelta6) is sufficient to activate pro-sigmaK for DNA binding and transcription initiation. Surprisingly, pro-sigmaKDelta6 binds to DNA with higher affinity and stimulates transcription 30-fold more efficiently than sigmaK, under certain conditions.