Earnshaw D J, Masquida B, Müller S, Sigurdsson S T, Eckstein F, Westhof E, Gait M J
Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
J Mol Biol. 1997 Nov 28;274(2):197-212. doi: 10.1006/jmbi.1997.1405.
The hairpin ribozyme is a small catalytic RNA composed of two helical domains containing a small and a large internal loop and, thus, constitutes a valuable paradigm for the study of RNA structure and catalysis. We have carried out molecular modelling of the hairpin ribozyme to learn how the two domains (A and B) might fold and approach each other. To help distinguish alternative inter-domain orientations, we have chemically synthesized hairpin ribozymes containing 2'-2' disulphide linkages of known spacing (12 or 16 A) between defined ribose residues in the internal loop regions of each domain. The abilities of cross-linked ribozymes to carry out RNA cleavage under single turnover conditions were compared to the corresponding disulphide-reduced, untethered ribozymes. Ribozymes were classed in three categories according to whether their cleavage rates were marginally, moderately, or strongly affected by cross-linking. This rank order of activity guided the docking of the two domains in the molecular modelling process. The proposed three-dimensional model of the hairpin ribozyme incorporates three different crystallographically determined structural motifs: in domain A, the 5'-GAR-3'-motif of the hammerhead ribozyme, in domain B, the J4/5 motif of group I ribozymes, and connecting the two domains, a "ribose zipper", another group I ribozyme feature, formed between the hydroxyl groups of residues A10, G11 of domain A and C25, A24 of domain B. This latter feature might be key to the selection and precise orientation of the inter-domain docking necessary for the specific phosphodiester cleavage. The model provides an important basis for further studies of hairpin ribozyme structure and function.
发夹状核酶是一种小的催化性RNA,由两个螺旋结构域组成,包含一个小的和一个大的内部环,因此,它构成了研究RNA结构和催化作用的一个有价值的范例。我们对发夹状核酶进行了分子建模,以了解这两个结构域(A和B)可能如何折叠并相互靠近。为了帮助区分不同的结构域间取向,我们化学合成了发夹状核酶,在每个结构域的内部环区域中特定核糖残基之间含有已知间距(12或16埃)的2'-2'二硫键连接。将交联核酶在单周转条件下进行RNA切割的能力与相应的二硫键还原的、未连接的核酶进行了比较。根据交联对其切割速率的影响是轻微、中等还是强烈,将核酶分为三类。这种活性的等级顺序在分子建模过程中指导了两个结构域的对接。所提出的发夹状核酶三维模型包含三种不同的晶体学确定的结构基序:在结构域A中,是锤头状核酶的5'-GAR-3'基序;在结构域B中,是I组核酶的J4/5基序;连接这两个结构域的是一个“核糖拉链”,这是I组核酶的另一个特征,在结构域A的A10、G11残基的羟基与结构域B的C25、A24残基之间形成。后一个特征可能是特定磷酸二酯键切割所需的结构域间对接的选择和精确取向的关键。该模型为进一步研究发夹状核酶的结构和功能提供了重要基础。