Schätz T, Langowski J
Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany.
J Biomol Struct Dyn. 1997 Oct;15(2):265-75. doi: 10.1080/07391102.1997.10508191.
We have calculated the curvature of 504 eukaryotic promoters predicted by the bent A-tract model of Bolshoy et al. (Proc. Natl. Acad. Sci. USA, 88(6), pp. 2312-16) and the bent non-A-tract models of Calladine et al. (J. Mol. Biol., 201, pp. 127-37) and Satchwell et al. (J. Mol. Biol., 191, pp. 659-75) and found in each case a correlation between TBP binding sites and DNA curvature. Characterizing the TBP binding sites revealed that in addition to the classical TATA box (TATAAA) five more elements occur significantly often in the promoters, nearly all of them being one point mutations of the classical TATA box element. Separate curvature calculations for promoters with canonical and non-canonical TATA boxes have shown that in both cases the strong curvature of the helix axes in the domain of the binding sites is maintained (classical TBP binding sites: + 64-135%, non-classical TBP binding sites: + 27-49%). These results support the proposition that beside DNA flexibility and DNA-protein interactions intrinsic curvature of DNA is one further important criterion for the recognition of different DNA elements by TBP.
我们计算了由Bolshoy等人(《美国国家科学院院刊》,88(6),第2312 - 2316页)的弯曲A - 序列模型以及Calladine等人(《分子生物学杂志》,201,第127 - 137页)和Satchwell等人(《分子生物学杂志》,191,第659 - 675页)的弯曲非A - 序列模型预测的504个真核启动子的曲率,并且在每种情况下都发现了TBP结合位点与DNA曲率之间的相关性。对TBP结合位点的特征分析表明,除了经典的TATA框(TATAAA)之外,启动子中还有另外五个元件显著频繁出现,几乎所有这些元件都是经典TATA框元件的单点突变。对具有典型和非典型TATA框的启动子进行单独的曲率计算表明,在这两种情况下,结合位点区域内螺旋轴的强烈曲率都得以保持(经典TBP结合位点:+ 64 - 135%,非经典TBP结合位点:+ 27 - 49%)。这些结果支持了这样一种观点,即除了DNA柔韧性和DNA - 蛋白质相互作用之外,DNA的固有曲率是TBP识别不同DNA元件的另一个重要标准。