Massillon D, Chen W, Barzilai N, Prus-Wertheimer D, Hawkins M, Liu R, Taub R, Rossetti L
Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
J Biol Chem. 1998 Jan 2;273(1):228-34. doi: 10.1074/jbc.273.1.228.
Hepatic gene expression of P-enolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (Glc-6-Pase) is regulated in response to changes in the availability of substrates, in particular glucose (Glc; Massillon, D., Barzilai, N., Chen, W., Hu, M., and Rossetti, L. (1996) J. Biol. Chem. 271, 9871-9874). We investigated the mechanism(s) in conscious rats. Hyperglycemia per se caused a rapid and marked increase in Glc-6-Pase mRNA abundance and protein levels. By contrast, hyperglycemia decreased the abundance of PEPCK mRNA. Importantly, inhibition of glucokinase activity by glucosamine infusion blunted both the stimulation of Glc-6-Pase and the inhibition of PEPCK gene expression by Glc, suggesting that an intrahepatic signal (metabolite) generated by the metabolism of glucose at or beyond Glc-6-P was responsible for the regulatory effect of Glc. The effect of Glc on the L-type pyruvate kinase gene is mediated by xylulose-5-P (Doiron, B., Cuif, M., Chen, R., and Kahn, A. (1996) J. Biol. Chem. 271, 5321-5324). Thus, we next investigated whether an isolated increase in the hepatic concentration of this metabolite can also reproduce the effects of Glc on Glc-6-Pase and PEPCK gene expression in vivo. Xylitol, which is directly converted to xylulose-5-P in the liver, was infused to raise the hepatic concentration of xylulose-5-P by approximately 3-fold. Xylitol infusion did not alter the levels of Glc-6-P and of fructose-2,6-biphosphate. However, it replicated the effects of hyperglycemia on Glc-6-Pase and PEPCK gene expression and resulted in a 75% increase in the in vivo flux through Glc-6-Pase (total glucose output).
磷酸烯醇式丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶(Glc-6-Pase)的肝脏基因表达会根据底物可用性的变化进行调节,尤其是葡萄糖(Glc;Massillon, D., Barzilai, N., Chen, W., Hu, M., and Rossetti, L. (1996) J. Biol. Chem. 271, 9871 - 9874)。我们在清醒大鼠中研究了其机制。高血糖本身导致Glc-6-Pase mRNA丰度和蛋白质水平迅速且显著增加。相比之下,高血糖降低了PEPCK mRNA的丰度。重要的是,通过注入氨基葡萄糖抑制葡萄糖激酶活性,减弱了Glc对Glc-6-Pase的刺激以及对PEPCK基因表达的抑制,这表明由葡萄糖在Glc-6-P及以后的代谢产生的肝内信号(代谢物)是Glc调节作用的原因。Glc对L型丙酮酸激酶基因的作用由木酮糖-5-磷酸介导(Doiron, B., Cuif, M., Chen, R., and Kahn, A. (1996) J. Biol. Chem. 271, 5321 - 5324)。因此,我们接下来研究这种代谢物在肝脏中浓度的单独升高是否也能在体内重现Glc对Glc-6-Pase和PEPCK基因表达的影响。木糖醇在肝脏中直接转化为木酮糖-5-磷酸,注入木糖醇以使肝脏中木酮糖-5-磷酸的浓度升高约3倍。注入木糖醇并未改变Glc-6-P和果糖-2,6-二磷酸的水平。然而,它重现了高血糖对Glc-6-Pase和PEPCK基因表达的影响,并导致通过Glc-6-Pase的体内通量(总葡萄糖输出)增加75%。