Suppr超能文献

FIM测量属性及拉施模型细节。

FIM measurement properties and Rasch model details.

作者信息

Wright B D, Linacre J M, Smith R M, Heinemann A W, Granger C V

出版信息

Scand J Rehabil Med. 1997 Dec;29(4):267-72.

PMID:9428061
Abstract

To summarize, we take issue with the criticisms of Dickson & Köhler for two main reasons: 1. Rasch analysis provides a model from which to approach the analysis of the FIM, an ordinal scale, as an interval scale. The existence of examples of items or individuals which do not fit the model does not disprove the overall efficacy of the model; and 2. the principal components analysis of FIM motor items as presented by Dickson & Köhler tends to undermine rather than support their argument. Their own analyses produce a single major factor explaining between 58.5 and 67.1% of the variance, depending upon the sample, with secondary factors explaining much less variance. Finally, analysis of item response, or latent trait, is a powerful method for understanding the meaning of a measure. However, it presumes that item scores are accurate. Another concern is that Dickson & Köhler do not address the issue of reliability of scoring the FIM items on which they report, a critical point in comparing results. The Uniform Data System for Medical Rehabilitation (UDSMRSM) expends extensive effort in the training of clinicians of subscribing facilities to score items accurately. This is followed up with a credentialing process. Phase 1 involves the testing of individual clinicians who are submitting data to determine if they have achieved mastery over the use of the FIM instrument. Phase 2 involves examining the data for outlying values. When Dickson & Köhler investigate more carefully the application of the Rasch model to their FIM data, they will discover that the results presented in their paper support rather than contradict their application of the Rasch model! This paper is typical of supposed refutations of Rasch model applications. Dickson & Köhler will find that idiosyncrasies in their data and misunderstandings of the Rasch model are the only basis for a claim to have disproven the relevance of the model to FIM data. The Rasch model is a mathematical theorem (like Pythagoras') and so cannot be disproven by empirical data once it has been deduced on theoretical grounds. Sometimes empirical data are not suitable for construction of a measure. When this happens, the routine fit statistics indicate the unsuitable segments of the data. Most FIM data do conform closely enough to the Rasch model to support generalizable linear measures. Science can advance!

摘要

总之,我们对迪克森和克勒的批评意见持有异议,主要有两个原因:1. 拉施分析提供了一种模型,可将作为顺序量表的FIM当作等距量表来进行分析。存在不符合该模型的项目或个体示例,并不能否定该模型的整体有效性;2. 迪克森和克勒所呈现的FIM运动项目主成分分析往往削弱而非支持他们的论点。他们自己的分析得出一个单一的主要因素,该因素解释了58.5%至67.1%的方差,具体取决于样本,而次要因素解释的方差要少得多。最后,项目反应分析或潜在特质分析是理解一项测量意义的有力方法。然而,它假定项目得分是准确的。另一个问题是,迪克森和克勒没有解决他们所报告的FIM项目评分可靠性问题,这是比较结果时的一个关键点。医学康复统一数据系统(UDSMRSM)在培训订阅机构的临床医生以准确评分项目方面投入了大量精力。随后会进行认证过程。第一阶段涉及对提交数据的个体临床医生进行测试,以确定他们是否已掌握FIM工具的使用。第二阶段涉及检查数据中的异常值。当迪克森和克勒更仔细地研究拉施模型在他们的FIM数据中的应用时,他们会发现他们论文中呈现的结果支持而非反驳他们对拉施模型的应用!本文是对拉施模型应用的所谓反驳的典型例子。迪克森和克勒会发现,他们数据中的特质和对拉施模型的误解是声称已证明该模型与FIM数据无关的唯一依据。拉施模型是一个数学定理(就像毕达哥拉斯定理一样),一旦基于理论推导得出,就不能被经验数据反驳。有时经验数据不适合构建一项测量。当这种情况发生时,常规的拟合统计会指出数据中不合适的部分。大多数FIM数据与拉施模型的契合度足够高,足以支持可推广的线性测量。科学是可以进步的!

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验