Suppr超能文献

Expression of the Fanconi anemia group C gene in hematopoietic cells is not influenced by oxidative stress, cross-linking agents, radiation, heat, or mitotic inhibitory factors.

作者信息

Tower P A, Christianson T A, Peters S T, Ostroski M L, Hoatlin M E, Zigler A J, Heinrich M C, Rathbun R K, Keeble W, Faulkner G R, Bagby G C

机构信息

Department of Medicine, Oregon Health Sciences University, Portland 97201-3098, USA.

出版信息

Exp Hematol. 1998 Jan;26(1):19-26.

PMID:9430510
Abstract

The Fanconi anemia group C gene (FAC) encodes a 63-kDa protein that plays a role in the growth and differentiation of hematopoietic progenitor cells and in cellular resistance to bifunctional cross-linking agents. The function of the gene product is unknown, as are the factors that govern expression of the gene itself. Seeking to associate a function of this protein with a general metabolic pathway, we attempted to identify factors that induce or repress expression of the gene encoding it. Using two plasmids from which mutant FAC mRNA molecules were transcribed in vitro to serve as competitor mRNAs in quantitative-competitive reverse transcriptase-polymerase chain reaction analysis and novel rabbit antisera raised to recombinant FAC proteins, we quantified gene expression in human hematopoietic cells. We determined that FAC is expressed constitutively in unstimulated normal peripheral blood mononuclear leukocytes, in Epstein-Barr virus (EBV)-transformed B lymphocytes, and in the factor-dependent human myeloid leukemic cell line MO7e at levels of approximately 2000, 200, and 200 FAC mRNA molecules/cell, respectively, and in CD34+ cells from normal human bone marrow at approximately 2000 FAC mRNA molecules/cell. Neither mRNA nor protein increased in any of the cells studied after exposure to mitomycin C, diepoxybutane, hydrogen peroxide, gamma radiation, heat, transforming growth factor-beta, or interferon-gamma. Using these sensitive methods, we confirmed that the FAC gene is constitutively expressed, even in the face of extracellular factors for which the gene product is a known effector of resistance. We conclude that the protective functions of the FAC gene product do not depend upon stressor-induced FAC gene expression.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验