Suppr超能文献

Cell-type specific factors bind to regulatory elements located downstream of the TATA-box element in the mouse myelin basic protein (MBP) gene promoter.

作者信息

Asipu A, Blair G E

机构信息

School of Biochemistry and Molecular Biology, University of Leeds, UK.

出版信息

Biochim Biophys Acta. 1998 Jan 21;1395(2):127-34. doi: 10.1016/s0167-4781(97)00184-x.

Abstract

Cell-type specific transcription of the myelin basic protein (MBP) gene in primary oligodendrocytes (OL) is regulated by cis-acting regulatory elements located at both upstream and downstream of the TATA-box region of the MBP promoter. To identify cell-type specific factors that bind to the downstream regulatory elements, we utilised DNase I footprinting analysis and gel retardation assays with nuclear extracts from myelin-forming OL as well as a non-myelin forming cell line, C6 glioma (C6) cells. Several regions of DNA were protected from DNAse I digestion by nuclear extracts of both cell types. However, two regions, from -17 to +17 and from +47 to +58 were protected specifically in OL, while three regions, from + 17 to + 22, from +43 to +49 and from +58 to +64 were protected only with C6 nuclear extracts. Inspection of the protected regions for homology with known transcription factor binding sites revealed that sequences at from +47 to +58 and from +56 to +68 showed extensive homology to the negative regulatory element (NRE1), of the mouse renin gene and to the interferon (IFN) consensus sequence of major histocompatibility complex class I genes (MHC I-ICS), respectively. Gel retardation assays using a MHC I-ICS oligonucleotide and transient transfection assays using MBP-CAT constructs were used to study the effect of IFNs on MBP promoter activity in OL and C6 cells. In OL, IFN-alpha/beta caused little induction of CAT activity, but IFN-gamma resulted in a 2-3.5-fold decrease in CAT activity. In contrast, in C6 cells both IFN-alpha/beta and IFN-gamma induced a 1.5-2.5-fold increase in CAT activity. The cooperative effects of factors binding to NREs and ICS may be responsible for the cell-type specific regulation of MBP gene transcription.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验