Drakopoulou E, Vizzavona J, Neyton J, Aniort V, Bouet F, Virelizier H, Ménez A, Vita C
CEA, Département d'Ingénierie et d'Etudes des Protéines, Service de Physique d'Expérimentation et d'Analyse, Gif-sur-Yvette, France.
Biochemistry. 1998 Feb 3;37(5):1292-301. doi: 10.1021/bi9721086.
Scorpion toxins are miniglobular proteins containing a common structural motif formed by an alpha-helix on one face, an antiparallel beta-sheet on the opposite face, and three disulfide bonds making up most of its internal volume. We have investigated the role of these evolutionary conserved bonds by replacing each couple of bridged cysteine residues of the scorpion charybdotoxin by a pair of nonbridging L-alpha-aminobutyric acid (Aba) residues. Three analogues were obtained by solid-phase synthesis, Chab I, Chab II, and Chab III, containing the Aba residues in positions 7 and 28, 13 and 33, 17 and 35, respectively. Circular dichroism analysis showed that the purified Chab II acquired a conformation similar to that of charybdotoxin, while the Chab I and Chab III possess decreased nativelike characteristics. All analogues block single high-conductance Ca(2+)-activated K+ channels from rat skeletal muscle inserted into planar lipid bilayers, but with different potencies. Chab II is the most active analogue (KD = 8.0 x 10(-8) M), with a 9-fold lower affinity as compared to native charybdotoxin. Chab I and Chab III have, respectively, 180- and 580-fold lower affinity. Therefore, the removal of evolutionary conserved disulfide bridges does not prevent the toxin to adopt a functional and presumably nativelike structure. However, removal of one disulfide bond affects the yields of formation of correct pairing between the remaining cysteine residues, and only Chab I preserves the ability to form the native disulfide pairings with high efficiency. This is the only analogue to preserve particular spacings of three and one residue between the cysteines, which have been described to thermodynamically disfavor disulfide bond formation between the cysteines [Zhang R., and Snyder, G. H. (1989) J. Biol. Chem. 264, 18472-18479]. Therefore, we conclude that the position of the cysteine residues in the sequence of charybdotoxin, by disfavoring specific pairings and favoring others, may govern selective formation of specific disulfide bonds, thus, explaining the efficient folding properties of Chab I and of native charybdotoxin. The structural properties of the Chab analogues and the discovered role of the cysteine spacings have interesting implications in protein design and engineering.
蝎毒素是微小球蛋白,其包含一种常见的结构基序,该结构基序由一侧的α-螺旋、另一侧的反平行β-折叠以及构成其大部分内部体积的三个二硫键形成。我们通过用一对非桥连的L-α-氨基丁酸(Aba)残基取代蝎毒素查布多毒素中每一对桥连的半胱氨酸残基,研究了这些进化保守键的作用。通过固相合成获得了三种类似物,即查布I、查布II和查布III,它们分别在第7和28位、第13和33位、第17和35位含有Aba残基。圆二色性分析表明,纯化后的查布II获得了与查布多毒素相似的构象,而查布I和查布III具有降低的天然样特征。所有类似物都能阻断插入平面脂质双层中的大鼠骨骼肌的单个高电导Ca(2+)激活的K+通道,但效力不同。查布II是活性最高的类似物(KD = 8.0×10(-8) M),与天然查布多毒素相比,亲和力低9倍。查布I和查布III的亲和力分别低180倍和580倍。因此,去除进化保守的二硫键并不妨碍毒素形成功能性且可能类似天然的结构。然而,去除一个二硫键会影响其余半胱氨酸残基之间正确配对形成的产率,只有查布I保留了高效形成天然二硫键配对的能力。这是唯一保留半胱氨酸之间三个和一个残基特定间距的类似物,据描述,这种间距在热力学上不利于半胱氨酸之间形成二硫键[Zhang R., and Snyder, G. H. (1989) J. Biol. Chem. 264, 18472 - 18479]。因此,我们得出结论,查布多毒素序列中半胱氨酸残基的位置,通过不利于特定配对而有利于其他配对,可能控制特定二硫键的选择性形成,从而解释了查布I和天然查布多毒素的有效折叠特性。查布类似物的结构特性以及发现的半胱氨酸间距的作用在蛋白质设计和工程中具有有趣的意义。