Suppr超能文献

与先天性副肌强直相关的Ile693Thr钠离子通道突变在人细胞系中的功能表达。

Functional expression of the Ile693Thr Na+ channel mutation associated with paramyotonia congenita in a human cell line.

作者信息

Plassart-Schiess E, Lhuillier L, George A L, Fontaine B, Tabti N

机构信息

INSERM CJF9608, Hopital de la Salpetriere, 47 boulevard de l'Hopital, 75651 Paris cedex 13, France.

出版信息

J Physiol. 1998 Mar 15;507 ( Pt 3)(Pt 3):721-7. doi: 10.1111/j.1469-7793.1998.721bs.x.

Abstract
  1. The Ile693Thr mutation of the skeletal muscle Na+ channel alpha-subunit is associated with an unusual phenotype of paramyotonia congenita characterized by cold-induced muscle weakness but no stiffness. This mutation occurs in the S4-S5 linker of domain II, a region that has not been previously implicated in paramyotonia congenita. 2. The Ile693Thr mutation was introduced into the human skeletal muscle Na+ gene for functional expression in human embryonic kidney (HEK) cells. The currents expressed were recorded with the whole-cell voltage-clamp technique. 3. In comparison with wild-type currents, Ile693Thr mutant currents showed a clear shift of about -9 mV in the voltage dependence of activation. 4. In contrast to other mutations of the Na+ channel known to cause paramyotonia congenita, the Ile693Thr mutation did not induce any significant change in the kinetics, nor in the voltage dependence, of fast inactivation. 5. In conclusion, this study provides further evidence of the involvement of the S4-S5 linker in the voltage dependence of Na+ channel activation. The negative shift in the voltage dependence found in this mutation must be associated to other defects, plausibly an impairment of the slow inactivation, to account for the long periods of muscle weakness experienced by the patients.
摘要
  1. 骨骼肌钠通道α亚基的Ile693Thr突变与先天性副肌强直的一种不寻常表型相关,其特征为冷诱导的肌无力但无僵硬。该突变发生在结构域II的S4 - S5连接区,此区域先前未被认为与先天性副肌强直有关。2. 将Ile693Thr突变引入人类骨骼肌钠基因,以便在人胚肾(HEK)细胞中进行功能表达。用全细胞电压钳技术记录所表达的电流。3. 与野生型电流相比,Ile693Thr突变体电流在激活电压依赖性方面显示出约 -9 mV的明显偏移。4. 与已知导致先天性副肌强直的钠通道其他突变不同,Ile693Thr突变在快速失活的动力学或电压依赖性方面未引起任何显著变化。5. 总之,本研究进一步证明了S4 - S5连接区参与钠通道激活的电压依赖性。在该突变中发现的电压依赖性负向偏移必定与其他缺陷相关,可能是慢失活受损,以解释患者经历的长时间肌无力。

相似文献

1
Functional expression of the Ile693Thr Na+ channel mutation associated with paramyotonia congenita in a human cell line.
J Physiol. 1998 Mar 15;507 ( Pt 3)(Pt 3):721-7. doi: 10.1111/j.1469-7793.1998.721bs.x.
2
A1152D mutation of the Na+ channel causes paramyotonia congenita and emphasizes the role of DIII/S4-S5 linker in fast inactivation.
J Physiol. 2005 Jun 1;565(Pt 2):415-27. doi: 10.1113/jphysiol.2004.081018. Epub 2005 Mar 24.
3
Mutant channels contribute <50% to Na+ current in paramyotonia congenita muscle.
Brain. 1999 Jun;122 ( Pt 6):1085-92. doi: 10.1093/brain/122.6.1085.
5
Characterization of a new sodium channel mutation at arginine 1448 associated with moderate Paramyotonia congenita in humans.
J Physiol. 1999 Jul 15;518 ( Pt 2)(Pt 2):337-44. doi: 10.1111/j.1469-7793.1999.0337p.x.
6
Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation.
Neuron. 1994 Feb;12(2):281-94. doi: 10.1016/0896-6273(94)90271-2.
8
Impairment of slow inactivation as a common mechanism for periodic paralysis in DIIS4-S5.
Neurology. 2002 Apr 23;58(8):1266-72. doi: 10.1212/wnl.58.8.1266.
9
Paramyotonia congenita: the R1448P Na+ channel mutation in adult human skeletal muscle.
Ann Neurol. 1996 May;39(5):599-608. doi: 10.1002/ana.410390509.
10
A defect in skeletal muscle sodium channel deactivation exacerbates hyperexcitability in human paramyotonia congenita.
J Physiol. 1998 Feb 1;506 ( Pt 3)(Pt 3):627-38. doi: 10.1111/j.1469-7793.1998.627bv.x.

引用本文的文献

1
Genetic spectrum and founder effect of non-dystrophic myotonia: a Japanese case series study.
J Neurol. 2022 Dec;269(12):6406-6415. doi: 10.1007/s00415-022-11305-6. Epub 2022 Jul 30.
3
Divalent cation-responsive myotonia and muscle paralysis in skeletal muscle sodium channelopathy.
Neuromuscul Disord. 2015 Nov;25(11):908-12. doi: 10.1016/j.nmd.2015.08.007. Epub 2015 Aug 20.
5
Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4: is Ca2+ regulation defective?
PLoS One. 2013 Dec 6;8(12):e81063. doi: 10.1371/journal.pone.0081063. eCollection 2013.
6
Skeletal muscle na channel disorders.
Front Pharmacol. 2011 Oct 14;2:63. doi: 10.3389/fphar.2011.00063. eCollection 2011.
7
8
A1152D mutation of the Na+ channel causes paramyotonia congenita and emphasizes the role of DIII/S4-S5 linker in fast inactivation.
J Physiol. 2005 Jun 1;565(Pt 2):415-27. doi: 10.1113/jphysiol.2004.081018. Epub 2005 Mar 24.
9
Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy.
J Neurosci. 2004 Sep 22;24(38):8232-6. doi: 10.1523/JNEUROSCI.2695-04.2004.
10
Mexiletine block of disease-associated mutations in S6 segments of the human skeletal muscle Na(+) channel.
J Physiol. 2001 Dec 15;537(Pt 3):701-14. doi: 10.1111/j.1469-7793.2001.00701.x.

本文引用的文献

2
Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis.
Biophys J. 1997 Mar;72(3):1204-19. doi: 10.1016/S0006-3495(97)78768-X.
3
Human Na+ channel fast and slow inactivation in paramyotonia congenita mutants expressed in Xenopus laevis oocytes.
J Physiol. 1997 Mar 15;499 ( Pt 3)(Pt 3):589-600. doi: 10.1113/jphysiol.1997.sp021952.
5
Impaired slow inactivation in mutant sodium channels.
Biophys J. 1996 Jul;71(1):227-36. doi: 10.1016/S0006-3495(96)79219-6.
6
Molecular pathophysiology of voltage-gated ion channels.
Rev Physiol Biochem Pharmacol. 1996;128:195-268. doi: 10.1007/3-540-61343-9_9.
7
Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker.
J Gen Physiol. 1996 May;107(5):559-76. doi: 10.1085/jgp.107.5.559.
8
Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis.
Ann Neurol. 1993 Mar;33(3):300-7. doi: 10.1002/ana.410330312.
9
Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis.
Neuron. 1993 Apr;10(4):667-78. doi: 10.1016/0896-6273(93)90168-q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验