Suppr超能文献

Antioxidative properties of organotellurium compounds in cell systems.

作者信息

Wieslander E, Engman L, Svensjö E, Erlansson M, Johansson U, Linden M, Andersson C M, Brattsand R

机构信息

Preclinical R & D, Astra Draco AB, Lund, Sweden.

出版信息

Biochem Pharmacol. 1998 Mar 1;55(5):573-84. doi: 10.1016/s0006-2952(97)00517-0.

Abstract

The protective/antioxidative properties of diaryl tellurides were demonstrated in cellular systems of increasing complexity. In the presence of glutathione, bis(4-hydroxyphenyl) telluride (1a), bis(4-aminophenyl) telluride (1d) and bis(2-carboxyphenyl) telluride (1h) reduced by more than 50% t-butyl hydroperoxide-induced cell death in lung fibroblast cultures at concentrations below 2 microM. Bis(2,6-dimethyl-4-hydroxyphenyl) telluride (2b) reduced by more than 50% leukocyte-mediated and phorbol-12-myristate-13-acetate-stimulated damage to Caco-2 cells at 0.1 microM concentration. As judged by their abilities to reduce formation of thiobarbituric acid reactive substances at concentrations close to 1 microM, diaryl tellurides 1a, 1d and 2b protected rat kidney tissue against oxidative damage caused by anoxia and reoxygenation. The organotellurium compounds also offered protection after systemic administration. In the presence of diaryl telluride 2b (0.1-1 microM), the ischemia/reperfusion-induced vascular permeability increase in the hamster cheek pouch was significantly reduced as compared with the control. Some of the most active organotellurium cell protectants were evaluated for their ability to inhibit formation of the inflammatory mediators leukotriene B4 and interleukin-1beta. An inhibitory effect on the secretion of these species was seen for compounds 1a and 2b at or above 10 microM concentrations. The protective effects of diaryl tellurides against t-butyl hydroperoxide-induced cell injury can be ascribed mainly to the peroxide-decomposing, glutathione peroxidase-like capacity of the compounds. The chain-breaking, electron- or hydrogen atom-donating ability of diaryl tellurides seems to be the main reason for their protection against leukocyte-mediated cell damage in Caco-2 cells and in the oxidatively challenged rat kidney and hamster cheek pouch.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验