Astatke M, Ng K, Grindley N D, Joyce C M
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3402-7. doi: 10.1073/pnas.95.7.3402.
Although nucleic acid polymerases from different families show striking similarities in structure, they maintain stringent specificity for the sugar structure of the incoming nucleoside triphosphate. The Klenow fragment of E. coli DNA polymerase I selects its natural substrates, deoxynucleotides, over ribonucleotides by several thousand fold. Analysis of mutant Klenow fragment derivatives indicates that discrimination is provided by the Glu-710 side chain which sterically blocks the 2'-OH of an incoming rNTP. A nearby aromatic side chain, at position 762, plays an important role in constraining the nucleotide so that the Glu-710 "steric gate" can be fully effective. Even with the E710A mutation, which is extremely permissive for addition of a single ribonucleotide to a DNA primer, Klenow fragment does not efficiently synthesize pure RNA, indicating that additional barriers prevent the incorporation of successive ribonucleotides.
尽管来自不同家族的核酸聚合酶在结构上表现出惊人的相似性,但它们对进入的核苷三磷酸的糖结构仍保持严格的特异性。大肠杆菌DNA聚合酶I的Klenow片段对其天然底物脱氧核苷酸的选择比对核糖核苷酸的选择高出数千倍。对突变的Klenow片段衍生物的分析表明,这种区分是由Glu-710侧链提供的,该侧链在空间上阻碍了进入的rNTP的2'-OH。762位附近的一个芳香族侧链在限制核苷酸方面起着重要作用,从而使Glu-710“空间门”能够充分发挥作用。即使是E710A突变体,它对在DNA引物上添加单个核糖核苷酸的宽容度极高,但Klenow片段也不能有效地合成纯RNA,这表明还有其他障碍阻止了连续核糖核苷酸的掺入。