Percy J R, Percy M E, Baumal R
Can J Biochem. 1976 Aug;54(8):688-98. doi: 10.1139/o76-099.
A mathematical model, based on second-order reaction kinetics, has been used to describe the covalent assembly of immunoglobulin G(IgG) in vitro from its heavy (H) and light (L) chains (Percy, M.E., Baumal, R., Dorrington, K.J. & Percy, J. (1976) Can. J. Biochem. 54, 675-687). In the present paper, the same model has now been applied to the steady-state assembly of IgG in vivo. This mathematical approach permits a quantitative comparison of the pathways of covalent assembly used by given immunoglobulins in vivo and in vitro. The assumptions in the model are: the species L, H, HL, HH, HHL and LHHL belong to a common pool; incompleted IgG intermediates may freely assemble to form HL, HH, HHL and LHHL; the reaction rate for covalent linkage between any two reacting species is proportional to the products of the number densities of the reactants and to a parameter P which takes the value PHH if the reaction joins two H chains, and PHL if it joins an H and L chain. In vivo values of PHH/PHL were determined for the 18 mouse myeloma tumours and cell lines studied by Baumal et al. (Baumal, R., Potter, M. & Scharff, M. (1971) J. Exp. Med. 134, 1316-1334). From these analyses, we have arrived at the following conclusions: (1) the three major IgG subclasses have distinctive values of PHH/PHL (mean value 53 for IgG1, 12 for IgG2a and 2.8 for IgG2b); (2) for IgGs of the same subclass, the values of PHH/PHL are similar; (3) the mean in vivo values of PHH/PHL are very close to those determined from in vitro assembly experiments. Finally, the individual values of PHH/PHL have been used to simulate pulse-chase experiments in the various tumours and cell lines. Considering the sources and magnitude of experimental error, the theoretical pathways of assembly agree with those determined qualitatively from the pulse-chase experiments.
一种基于二级反应动力学的数学模型已被用于描述免疫球蛋白G(IgG)在体外由其重链(H)和轻链(L)进行的共价组装(珀西,M.E.,鲍马尔,R.,多林顿,K.J.和珀西,J.(1976年)《加拿大生物化学杂志》54卷,675 - 687页)。在本文中,同一模型现已应用于IgG在体内的稳态组装。这种数学方法允许对给定免疫球蛋白在体内和体外进行共价组装的途径进行定量比较。该模型中的假设为:L、H、HL、HH、HHL和LHHL这些种类属于一个共同的库;未完成的IgG中间体可自由组装形成HL、HH、HHL和LHHL;任意两个反应物种之间共价连接的反应速率与反应物数量密度的乘积以及一个参数P成正比,如果反应连接两条H链,则P取值为PHH,如果连接一条H链和一条L链,则P取值为PHL。针对鲍马尔等人研究的18种小鼠骨髓瘤肿瘤和细胞系,测定了体内的PHH/PHL值(鲍马尔,R.,波特,M.和沙夫,M.(1971年)《实验医学杂志》134卷,1316 - 1334页)。通过这些分析,我们得出了以下结论:(1)三种主要的IgG亚类具有不同的PHH/PHL值(IgG1的平均值为53,IgG2a为12,IgG2b为2.8);(2)对于同一亚类的IgG,PHH/PHL值相似;(3)体内PHH/PHL的平均值与体外组装实验确定的值非常接近。最后,PHH/PHL的各个值已被用于模拟各种肿瘤和细胞系中的脉冲追踪实验。考虑到实验误差的来源和大小,组装的理论途径与从脉冲追踪实验定性确定的途径相符。