Taylor C P, Gee N S, Su T Z, Kocsis J D, Welty D F, Brown J P, Dooley D J, Boden P, Singh L
Department of Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Co., Ann Arbor, MI 48105, USA.
Epilepsy Res. 1998 Feb;29(3):233-49. doi: 10.1016/s0920-1211(97)00084-3.
Although the cellular mechanisms of pharmacological actions of gabapentin (Neurontin) remain incompletely described, several hypotheses have been proposed. It is possible that different mechanisms account for anticonvulsant, antinociceptive, anxiolytic and neuroprotective activity in animal models. Gabapentin is an amino acid, with a mechanism that differs from those of other anticonvulsant drugs such as phenytoin, carbamazepine or valproate. Radiotracer studies with [14C]gabapentin suggest that gabapentin is rapidly accessible to brain cell cytosol. Several hypotheses of cellular mechanisms have been proposed to explain the pharmacology of gabapentin: 1. Gabapentin crosses several membrane barriers in the body via a specific amino acid transporter (system L) and competes with leucine, isoleucine, valine and phenylalanine for transport. 2. Gabapentin increases the concentration and probably the rate of synthesis of GABA in brain, which may enhance non-vesicular GABA release during seizures. 3. Gabapentin binds with high affinity to a novel binding site in brain tissues that is associated with an auxiliary subunit of voltage-sensitive Ca2+ channels. Recent electrophysiology results suggest that gabapentin may modulate certain types of Ca2+ current. 4. Gabapentin reduces the release of several monoamine neurotransmitters. 5. Electrophysiology suggests that gabapentin inhibits voltage-activated Na+ channels, but other results contradict these findings. 6. Gabapentin increases serotonin concentrations in human whole blood, which may be relevant to neurobehavioral actions. 7. Gabapentin prevents neuronal death in several models including those designed to mimic amyotrophic lateral sclerosis (ALS). This may occur by inhibition of glutamate synthesis by branched-chain amino acid aminotransferase (BCAA-t).
尽管加巴喷丁(Neurontin)药理作用的细胞机制尚未完全阐明,但已提出了几种假说。在动物模型中,不同机制可能分别解释其抗惊厥、抗伤害感受、抗焦虑和神经保护活性。加巴喷丁是一种氨基酸,其作用机制不同于苯妥英、卡马西平或丙戊酸盐等其他抗惊厥药物。用[14C]加巴喷丁进行的放射性示踪研究表明,加巴喷丁可迅速进入脑细胞胞质溶胶。已提出了几种细胞机制假说以解释加巴喷丁的药理学:1. 加巴喷丁通过特定的氨基酸转运体(系统L)穿过体内的多个膜屏障,并与亮氨酸、异亮氨酸、缬氨酸和苯丙氨酸竞争转运。2. 加巴喷丁增加脑中GABA的浓度并可能提高其合成速率,这可能在癫痫发作期间增强非囊泡性GABA释放。3. 加巴喷丁与脑组织中一个与电压敏感性Ca2+通道辅助亚基相关的新结合位点具有高亲和力结合。最近的电生理学结果表明,加巴喷丁可能调节某些类型的Ca2+电流。4. 加巴喷丁减少几种单胺类神经递质的释放。5. 电生理学表明加巴喷丁抑制电压激活的Na+通道,但其他结果与这些发现相矛盾。6. 加巴喷丁增加人全血中的血清素浓度,这可能与神经行为作用有关。7. 加巴喷丁在包括模拟肌萎缩侧索硬化(ALS)的模型在内的几种模型中可防止神经元死亡。这可能是通过抑制支链氨基酸转氨酶(BCAA-t)合成谷氨酸而发生的。