Suppr超能文献

利用家族史信息区分无模型连锁分析结果中的真阳性和假阳性。

Using family history information to distinguish true and false positive model-free linkage results.

作者信息

Olson J M, Elston R C

机构信息

Department of Epidemiology and Biostatistics, Rammelkamp Center for Education and Research, Case Western Reserve University, Cleveland, Ohio 44109, USA.

出版信息

Genet Epidemiol. 1998;15(2):183-92. doi: 10.1002/(SICI)1098-2272(1998)15:2<183::AID-GEPI6>3.0.CO;2-7.

Abstract

Genome scans that test for increased marker identity-by-descent sharing between pairs of affected siblings have become increasingly common. These methods do not specify a priori a genetic model for the disease locus and as such lose the ability to specify the parental source of the disease allele. We propose a method that uses family history information to build a more complete model of disease and marker inheritance, while still avoiding specification of the parameters of the disease model of inheritance. One important use for such a model is to test whether a positive linkage result obtained during the course of a genome scan is a true or false positive result. The key to the new test statistics is the interaction between gender-specific marker identity-by-descent sharing and gender-specific family history of disease. The method is useful when the disease locus of interest has a dominant mode of inheritance and a sufficient number of parents are genotyped at the marker locus. If these conditions are met, the proposed tests have good power to differentiate between true and false positive linkage results.

摘要

对患病同胞对之间通过血缘共享的标记同一性增加进行检测的基因组扫描已变得越来越普遍。这些方法没有预先指定疾病位点的遗传模型,因此失去了确定疾病等位基因亲本来源的能力。我们提出了一种方法,该方法利用家族史信息构建更完整的疾病和标记遗传模型,同时仍避免指定疾病遗传模型的参数。这种模型的一个重要用途是测试在基因组扫描过程中获得的阳性连锁结果是真阳性还是假阳性结果。新检验统计量的关键在于特定性别的通过血缘共享的标记与特定性别的疾病家族史之间的相互作用。当感兴趣的疾病位点具有显性遗传模式且在标记位点对足够数量的父母进行基因分型时,该方法很有用。如果满足这些条件,所提出的检验具有很好的能力来区分真阳性和假阳性连锁结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验