Skaper S D, Floreani M, Negro A, Facci L, Giusti P
Dipartimento di Farmacologia, CRIBI, Università di Padova, Italy.
J Neurochem. 1998 May;70(5):1859-68. doi: 10.1046/j.1471-4159.1998.70051859.x.
Cerebellar granule neurons maintained in medium containing serum and 25 mM K+ reliably undergo an apoptotic death when switched to serum-free medium with 5 mM K+. New mRNA and protein synthesis and formation of reactive oxygen intermediates are required steps in K+ deprivation-induced apoptosis of these neurons. Here we show that neurotrophins, members of the nerve growth factor gene family, protect from K+/serum deprivation-induced apoptotic death of cerebellar granule neurons in a temporally distinct manner. Switching granule neurons, on day in vitro (DIV) 4, 10, 20, 30, or 40, from high-K+ to low-K+/serum-free medium decreased viability by >50% when measured after 30 h. Treatment of low-K+ granule neurons at DIV 4 with nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3, or neurotrophin-4/5 (NT-4/5) demonstrated concentration-dependent (1-100 ng/ml) protective effects only for BDNF and NT-4/5. Between DIV 10 and 20, K+-deprived granule neurons showed decreasing sensitivity to BDNF and no response to NT-4/5. Cerebellar granule neuron death induced by K+ withdrawal at DIV 30 and 40 was blocked only by neurotrophin-3. BDNF and NT-4/5 also circumvented glutamate-induced oxidative death in DIV 1-2 granule neurons. Granule neuron death caused by K+ withdrawal or glutamate-triggered oxidative stress was, moreover, limited by free radical scavengers like melatonin. Neurotrophin-protective effects, but not those of antioxidants, were blocked by selective inhibitors of phosphatidylinositol 3-kinase or the mitogen-activated protein kinase pathway, depending on the nature of the oxidant stress. These observations indicate that the survival-promoting effects of neurotrophins for central neurons, whose cellular antioxidant defenses are challenged, require activation of distinct signal transduction pathways.
在含有血清和25 mM钾离子的培养基中培养的小脑颗粒神经元,当转换到含5 mM钾离子的无血清培养基时,会可靠地经历凋亡死亡。新的mRNA和蛋白质合成以及活性氧中间体的形成是这些神经元钾离子剥夺诱导凋亡过程中的必要步骤。在这里,我们表明神经营养因子,即神经生长因子基因家族的成员,以时间上不同的方式保护小脑颗粒神经元免受钾离子/血清剥夺诱导的凋亡死亡。在体外培养第4、10、20、30或40天,将颗粒神经元从高钾培养基转换到低钾/无血清培养基中,30小时后测量发现其活力降低超过50%。在体外培养第4天用神经生长因子、脑源性神经营养因子(BDNF)、神经营养因子-3或神经营养因子-4/5(NT-4/5)处理低钾颗粒神经元,结果显示只有BDNF和NT-4/5具有浓度依赖性(1 - 100 ng/ml)的保护作用。在体外培养第10天到20天之间,钾离子剥夺的颗粒神经元对BDNF的敏感性降低,对NT-4/5无反应。在体外培养第30天和40天,钾离子撤离诱导的小脑颗粒神经元死亡仅被神经营养因子-3阻断。BDNF和NT-4/5还能规避体外培养第1 - 2天颗粒神经元中谷氨酸诱导的氧化死亡。此外,钾离子撤离或谷氨酸引发的氧化应激导致的颗粒神经元死亡受到褪黑素等自由基清除剂的限制。根据氧化应激的性质,神经营养因子的保护作用而非抗氧化剂的保护作用被磷脂酰肌醇3激酶或丝裂原活化蛋白激酶途径的选择性抑制剂阻断。这些观察结果表明,对于细胞抗氧化防御受到挑战的中枢神经元,神经营养因子的促存活作用需要激活不同的信号转导途径。