Suppr超能文献

全三维单光子发射计算机断层成像(SPECT)图像重建中基于重建的散射补偿的快速实现方法

Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction.

作者信息

Kadrmas D J, Frey E C, Karimi S S, Tsui B M

机构信息

Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, 27599, USA.

出版信息

Phys Med Biol. 1998 Apr;43(4):857-73. doi: 10.1088/0031-9155/43/4/014.

Abstract

Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has resulted in prohibitively long reconstruction times. In this work we propose two new methods that can be used in conjunction with existing methods to achieve marked reductions in RBSC reconstruction times. The first method, coarse-grid scatter modelling, significantly accelerates the scatter model by exploiting the fact that scatter is dominated by low-frequency information. The second method, intermittent RBSC, further accelerates the reconstruction process by limiting the number of iterations during which scatter is modelled. The fast implementations were evaluated using a Monte Carlo simulated experiment of the 3D MCAT phantom with 99mTc tracer, and also using experimentally acquired data with 201Tl tracer. Results indicated that these fast methods can reconstruct, with fully 3D compensation, images very similar to those obtained using standard RBSC methods, and in reconstruction times that are an order of magnitude shorter. Using these methods, fully 3D iterative reconstruction with RBSC can be performed well within the realm of clinically realistic times (under 10 minutes for 64 x 64 x 24 image reconstruction).

摘要

在单光子发射计算机断层显像(SPECT)中,准确的散射补偿可通过在重建过程中对散射响应函数进行建模来实现。这种方法被称为基于重建的散射补偿(RBSC)。已表明,与其他散射补偿方法相比,RBSC具有许多优势,但使用RBSC进行全三维补偿会导致重建时间长得令人望而却步。在这项工作中,我们提出了两种新方法,可与现有方法结合使用,以显著减少RBSC的重建时间。第一种方法是粗网格散射建模,它利用散射主要由低频信息主导这一事实,显著加速了散射模型。第二种方法是间歇性RBSC,通过限制对散射进行建模的迭代次数,进一步加速重建过程。使用含99mTc示踪剂的三维MCAT体模的蒙特卡罗模拟实验,以及使用含201Tl示踪剂的实验获取数据,对这些快速实现方法进行了评估。结果表明,这些快速方法能够在全三维补偿的情况下重建出与使用标准RBSC方法获得的图像非常相似的图像,且重建时间缩短了一个数量级。使用这些方法,结合RBSC的全三维迭代重建能够在临床实际可行的时间范围内顺利完成(对于64×64×24图像重建,时间在10分钟以内)。

相似文献

1
Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction.
Phys Med Biol. 1998 Apr;43(4):857-73. doi: 10.1088/0031-9155/43/4/014.
2
Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT.
Phys Med Biol. 2008 Jul 21;53(14):N277-85. doi: 10.1088/0031-9155/53/14/N02. Epub 2008 Jun 23.
4
Evaluation of 3D Monte Carlo-based scatter correction for 201Tl cardiac perfusion SPECT.
J Nucl Med. 2007 Apr;48(4):637-44. doi: 10.2967/jnumed.106.037259.
6
Improved quantitative Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling.
Med Phys. 2017 Dec;44(12):6364-6376. doi: 10.1002/mp.12597. Epub 2017 Oct 28.
7
Analysis of the reconstructibility and noise properties of scattered photons in 99mTc SPECT.
Phys Med Biol. 1997 Dec;42(12):2493-516. doi: 10.1088/0031-9155/42/12/014.
8
Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation.
IEEE Trans Med Imaging. 2002 Aug;21(8):867-77. doi: 10.1109/TMI.2002.803130.
9
Impact of reconstruction parameters on quantitative I-131 SPECT.
Phys Med Biol. 2016 Jul 21;61(14):5166-82. doi: 10.1088/0031-9155/61/14/5166. Epub 2016 Jun 28.
10
Evaluation of quantitative 123I and 131I SPECT with Monte Carlo-based down-scatter compensation.
Nucl Med Commun. 2018 Dec;39(12):1097-1102. doi: 10.1097/MNM.0000000000000920.

引用本文的文献

1
Evaluation of quantitative accuracy among different scatter corrections for quantitative bone SPECT/CT imaging.
PLoS One. 2022 Jun 6;17(6):e0269542. doi: 10.1371/journal.pone.0269542. eCollection 2022.
2
Renal Tc-DMSA pharmacokinetics in pediatric patients.
EJNMMI Phys. 2021 Jul 20;8(1):53. doi: 10.1186/s40658-021-00401-7.
4
Missing head and color banding in low-count SPECT reconstructions.
EJNMMI Phys. 2014 Dec;1(1):10. doi: 10.1186/2197-7364-1-10. Epub 2014 Sep 8.
5
Dosimetry for radiopharmaceutical therapy.
Semin Nucl Med. 2014 May;44(3):172-8. doi: 10.1053/j.semnuclmed.2014.03.007.
6
Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections.
Nucl Med Commun. 2014 May;35(5):522-33. doi: 10.1097/MNM.0000000000000079.
9
Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality.
Eur J Nucl Med Mol Imaging. 2014 May;41 Suppl 1:S17-25. doi: 10.1007/s00259-013-2542-4. Epub 2013 Sep 14.

本文引用的文献

1
Block-iterative methods for image reconstruction from projections.
IEEE Trans Image Process. 1996;5(5):792-4. doi: 10.1109/83.499919.
2
Accelerated image reconstruction using ordered subsets of projection data.
IEEE Trans Med Imaging. 1994;13(4):601-9. doi: 10.1109/42.363108.
3
Bayesian reconstruction and use of anatomical a priori information for emission tomography.
IEEE Trans Med Imaging. 1996;15(5):673-86. doi: 10.1109/42.538945.
5
Implementation of a model-based nonuniform scatter correction scheme for SPECT.
IEEE Trans Med Imaging. 1997 Dec;16(6):717-26. doi: 10.1109/42.650869.
8
10
Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation.
Phys Med Biol. 1984 Oct;29(10):1217-30. doi: 10.1088/0031-9155/29/10/005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验