Suppr超能文献

DctA和DctB在豆科根瘤菌二羧酸转运系统信号检测中的作用。

Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum.

作者信息

Reid C J, Poole P S

机构信息

School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, United Kingdom.

出版信息

J Bacteriol. 1998 May;180(10):2660-9. doi: 10.1128/JB.180.10.2660-2669.1998.

Abstract

The dctA gene, coding for the dicarboxylate transport protein, has an inducible promoter dependent on activation by the two-component sensor-regulator pair DctB and DctD. LacZ fusion analysis indicates that there is a single promoter for dctB and dctD. The dctA promoter is also induced by nitrogen limitation, an effect that requires DctB-DctD and NtrC. DctB alone is able to detect dicarboxylates in the absence of DctA and initiate transcription via DctD. However, DctA modifies signal detection by DctB such that in the absence of DctA, the ligand specificity of DctB is broader. dctAp also responds to heterologous induction by osmotic stress in the absence of DctA. This effect requires both DctB and DctD. A transposon insertion in the dctA-dctB intergenic region (dctA101) which locks transcription of dctA at a constitutive level independent of DctB-DctD results in improper signalling by DctB-DctD. Strain RU150, which carries this insertion, is defective in nitrogen fixation (Fix-) and grows very poorly on ammonia as a nitrogen source whenever the DctB-DctD signalling circuit is activated by the presence of a dicarboxylate ligand. Mutation of dctB or dctD in strain RU150 reinstates normal growth on dicarboxylates. This suggests that DctD-P improperly regulates a heterologous nitrogen-sensing operon. Increased expression of DctA, either via a plasmid or by chromosomal duplication, restores control of DctB-DctD and allows strain RU150 to grow on ammonia in the presence of a dicarboxylate. Thus, while DctB is a sensor for dicarboxylates in its own right, it is regulated by DctA. The absence of DctA allows DctB and DctD to become promiscuous with regard to signal detection and cross talk with other operons. This indicates that DctA contributes significantly to the signalling specificity of DctB-DctD and attenuates cross talk with other operons.

摘要

编码二羧酸转运蛋白的dctA基因具有一个可诱导启动子,该启动子依赖于双组分传感调节对DctB和DctD的激活。LacZ融合分析表明,dctB和dctD有一个单一的启动子。dctA启动子也受氮限制诱导,这一效应需要DctB - DctD和NtrC。在没有DctA的情况下,单独的DctB能够检测二羧酸并通过DctD启动转录。然而DctA会改变DctB的信号检测,使得在没有DctA时,DctB的配体特异性更广。在没有DctA的情况下,dctAp也会对渗透胁迫的异源诱导作出反应。这一效应需要DctB和DctD两者。dctA - dctB基因间区域的转座子插入(dctA101)使dctA的转录锁定在一个不依赖DctB - DctD的组成型水平,导致DctB - DctD的信号传导不当。携带此插入的RU150菌株在固氮方面有缺陷(Fix-),并且每当二羧酸配体的存在激活DctB - DctD信号传导回路时,它在以氨作为氮源时生长非常差。RU150菌株中dctB或dctD的突变恢复了在二羧酸上的正常生长。这表明DctD - P对一个异源氮感应操纵子进行了不当调节。通过质粒或染色体复制增加DctA的表达,恢复了对DctB - DctD的控制,并使RU150菌株在二羧酸存在的情况下能够在氨上生长。因此,虽然DctB本身是二羧酸的传感器,但它受DctA调节。DctA的缺失使DctB和DctD在信号检测方面变得混杂,并与其他操纵子发生串扰。这表明DctA对DctB - DctD的信号特异性有显著贡献,并减弱了与其他操纵子的串扰。

相似文献

1
Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum.
J Bacteriol. 1998 May;180(10):2660-9. doi: 10.1128/JB.180.10.2660-2669.1998.
2
Negative regulation of sigma 54-dependent dctA expression by the transcriptional activator DctD.
J Bacteriol. 1993 May;175(9):2674-81. doi: 10.1128/jb.175.9.2674-2681.1993.
4
Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti.
Mol Microbiol. 1989 Jun;3(6):813-23. doi: 10.1111/j.1365-2958.1989.tb00230.x.
6
Signal transduction in the Rhizobium meliloti dicarboxylic acid transport system.
FEMS Microbiol Lett. 1995 Feb 1;126(1):25-30. doi: 10.1111/j.1574-6968.1995.tb07385.x.
7
Dicarboxylate transport by rhizobia.
FEMS Microbiol Rev. 2004 Oct;28(4):489-501. doi: 10.1016/j.femsre.2004.04.002.
10
Inactivation and regulation of the aerobic C(4)-dicarboxylate transport (dctA) gene of Escherichia coli.
J Bacteriol. 1999 Sep;181(18):5624-35. doi: 10.1128/JB.181.18.5624-5635.1999.

引用本文的文献

2
Lifestyle adaptations of from rhizosphere to symbiosis.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23823-23834. doi: 10.1073/pnas.2009094117. Epub 2020 Sep 8.
4
Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate.
J Bacteriol. 2016 Dec 13;199(1). doi: 10.1128/JB.00572-16. Print 2017 Jan 1.
5
Role of the Transporter-Like Sensor Kinase CbrA in Histidine Uptake and Signal Transduction.
J Bacteriol. 2015 Sep;197(17):2867-78. doi: 10.1128/JB.00361-15. Epub 2015 Jul 6.
6
Pseudomonas aeruginosa MifS-MifR Two-Component System Is Specific for α-Ketoglutarate Utilization.
PLoS One. 2015 Jun 26;10(6):e0129629. doi: 10.1371/journal.pone.0129629. eCollection 2015.
7
Eco-evolutionary feedbacks drive species interactions.
ISME J. 2014 May;8(5):1041-54. doi: 10.1038/ismej.2013.208. Epub 2013 Dec 5.
8
Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae.
Microbiology (Reading). 2013 Apr;159(Pt 4):792-802. doi: 10.1099/mic.0.064865-0. Epub 2013 Feb 21.
10
Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2011 Sep;193(17):4307-16. doi: 10.1128/JB.05074-11. Epub 2011 Jul 1.

本文引用的文献

1
C(4)-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens.
Proc Natl Acad Sci U S A. 1981 Jul;78(7):4284-8. doi: 10.1073/pnas.78.7.4284.
4
Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons.
Microbiology (Reading). 1996 Sep;142 ( Pt 9):2603-12. doi: 10.1099/00221287-142-9-2603.
6
Modular structure of the Rhizobium meliloti DctB protein.
FEMS Microbiol Lett. 1996 May 15;139(1):19-25. doi: 10.1111/j.1574-6968.1996.tb08174.x.
8
Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.
J Bacteriol. 1993 May;175(9):2662-73. doi: 10.1128/jb.175.9.2662-2673.1993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验