Reid C J, Poole P S
School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, United Kingdom.
J Bacteriol. 1998 May;180(10):2660-9. doi: 10.1128/JB.180.10.2660-2669.1998.
The dctA gene, coding for the dicarboxylate transport protein, has an inducible promoter dependent on activation by the two-component sensor-regulator pair DctB and DctD. LacZ fusion analysis indicates that there is a single promoter for dctB and dctD. The dctA promoter is also induced by nitrogen limitation, an effect that requires DctB-DctD and NtrC. DctB alone is able to detect dicarboxylates in the absence of DctA and initiate transcription via DctD. However, DctA modifies signal detection by DctB such that in the absence of DctA, the ligand specificity of DctB is broader. dctAp also responds to heterologous induction by osmotic stress in the absence of DctA. This effect requires both DctB and DctD. A transposon insertion in the dctA-dctB intergenic region (dctA101) which locks transcription of dctA at a constitutive level independent of DctB-DctD results in improper signalling by DctB-DctD. Strain RU150, which carries this insertion, is defective in nitrogen fixation (Fix-) and grows very poorly on ammonia as a nitrogen source whenever the DctB-DctD signalling circuit is activated by the presence of a dicarboxylate ligand. Mutation of dctB or dctD in strain RU150 reinstates normal growth on dicarboxylates. This suggests that DctD-P improperly regulates a heterologous nitrogen-sensing operon. Increased expression of DctA, either via a plasmid or by chromosomal duplication, restores control of DctB-DctD and allows strain RU150 to grow on ammonia in the presence of a dicarboxylate. Thus, while DctB is a sensor for dicarboxylates in its own right, it is regulated by DctA. The absence of DctA allows DctB and DctD to become promiscuous with regard to signal detection and cross talk with other operons. This indicates that DctA contributes significantly to the signalling specificity of DctB-DctD and attenuates cross talk with other operons.
编码二羧酸转运蛋白的dctA基因具有一个可诱导启动子,该启动子依赖于双组分传感调节对DctB和DctD的激活。LacZ融合分析表明,dctB和dctD有一个单一的启动子。dctA启动子也受氮限制诱导,这一效应需要DctB - DctD和NtrC。在没有DctA的情况下,单独的DctB能够检测二羧酸并通过DctD启动转录。然而DctA会改变DctB的信号检测,使得在没有DctA时,DctB的配体特异性更广。在没有DctA的情况下,dctAp也会对渗透胁迫的异源诱导作出反应。这一效应需要DctB和DctD两者。dctA - dctB基因间区域的转座子插入(dctA101)使dctA的转录锁定在一个不依赖DctB - DctD的组成型水平,导致DctB - DctD的信号传导不当。携带此插入的RU150菌株在固氮方面有缺陷(Fix-),并且每当二羧酸配体的存在激活DctB - DctD信号传导回路时,它在以氨作为氮源时生长非常差。RU150菌株中dctB或dctD的突变恢复了在二羧酸上的正常生长。这表明DctD - P对一个异源氮感应操纵子进行了不当调节。通过质粒或染色体复制增加DctA的表达,恢复了对DctB - DctD的控制,并使RU150菌株在二羧酸存在的情况下能够在氨上生长。因此,虽然DctB本身是二羧酸的传感器,但它受DctA调节。DctA的缺失使DctB和DctD在信号检测方面变得混杂,并与其他操纵子发生串扰。这表明DctA对DctB - DctD的信号特异性有显著贡献,并减弱了与其他操纵子的串扰。