Suppr超能文献

不使用外部基准标记物进行磁共振成像(MR)和单光子发射计算机断层扫描(SPECT)的配准。

Registration of MR and SPECT without using external fiducial markers.

作者信息

de Munck J C, Verster F C, Dubois E A, Habraken J B, Boltjes B, Claus J J, van Herk M

机构信息

The Netherlands Cancer Institute (Antoni van Leeuwenhoek Huis), Radiotherapy Department, Amsterdam.

出版信息

Phys Med Biol. 1998 May;43(5):1255-69. doi: 10.1088/0031-9155/43/5/015.

Abstract

The aim of our work is to present, test and validate an automated registration method used for matching brain SPECT scans with corresponding MR scans. The method was applied on a data set consisting of ten brain IDEX SPECT scans and ten T1- and T2-weighted MR scans of the same subjects. Of two subjects a CT scan was also made. (Semi-) automated algorithms were used to extract the brain from the MR, CT and SPECT images. Next, a surface registration technique called chamfer matching was used to match the segmented brains. A perturbation study was performed to determine the sensitivity of the matching results to the choice of the starting values. Furthermore, the SPECT segmentation threshold was varied to study its effect on the resulting parameters and a comparison between the use of MR T1- and T2-weighted images was made. Finally, the two sets of CT scans were used to estimate the accuracy by matching MR to CT and comparing the MR-SPECT match to the SPECT-CT match. The perturbation study showed that for initial perturbations up to 6 cm the algorithm fails in less than 4% of the cases. A variation of the SPECT segmentation threshold over a realistic range (25%) caused an average variation in the optimal match of 0.28 cm vector length. When T2 is used instead of T1 the stability of the algorithm is comparable but the results are less realistic due the large deformations. Finally, a comparison of the direct SPECT-MR match and the indirect match with CT as intermediate yields a discrepancy of 0.4 cm vector length. We conclude that the accuracy of our automatic matching algorithm for SPECT and MR, in which no external markers were used, is comparable to the accuracies reported in the literature for non-automatic methods or methods based on external markers. The proposed method is efficient and insensitive to small variations in SPECT segmentation.

摘要

我们工作的目的是展示、测试并验证一种用于将脑部单光子发射计算机断层扫描(SPECT)与相应磁共振成像(MR)扫描进行匹配的自动配准方法。该方法应用于一个数据集,该数据集由同一受试者的十次脑部IDEX SPECT扫描以及十次T1加权和T2加权MR扫描组成。对其中两名受试者还进行了CT扫描。使用(半)自动算法从MR、CT和SPECT图像中提取脑部。接下来,使用一种称为倒角匹配的表面配准技术来匹配分割后的脑部。进行了一项扰动研究,以确定匹配结果对起始值选择的敏感性。此外,改变SPECT分割阈值以研究其对所得参数的影响,并对使用MR T1加权和T2加权图像进行了比较。最后,使用两组CT扫描通过将MR与CT匹配并比较MR - SPECT匹配与SPECT - CT匹配来估计准确性。扰动研究表明,对于初始扰动高达6厘米的情况,该算法在不到4%的案例中失败。SPECT分割阈值在实际范围内变化(25%)会导致最佳匹配的平均向量长度变化0.28厘米。当使用T2代替T1时,算法的稳定性相当,但由于变形较大,结果不太符合实际情况。最后,直接SPECT - MR匹配与以CT为中间媒介的间接匹配的比较产生了0.4厘米向量长度的差异。我们得出结论,我们的SPECT和MR自动匹配算法(未使用外部标记) 的准确性与文献中报道的非自动方法或基于外部标记的方法的准确性相当。所提出的方法效率高,并且对SPECT分割中的小变化不敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验