Suppr超能文献

健康与疾病状态下的脑皮质类固醇受体平衡

Brain corticosteroid receptor balance in health and disease.

作者信息

De Kloet E R, Vreugdenhil E, Oitzl M S, Joëls M

机构信息

Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, University of Leiden, The Netherlands.

出版信息

Endocr Rev. 1998 Jun;19(3):269-301. doi: 10.1210/edrv.19.3.0331.

Abstract

In this review, we have described the function of MR and GR in hippocampal neurons. The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation. Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals. The following specific inferences can be made on the basis of the currently available facts. 1. Corticosterone binds with high affinity to MRs predominantly localized in limbic brain (hippocampus) and with a 10-fold lower affinity to GRs that are widely distributed in brain. MRs are close to saturated with low basal concentrations of corticosterone, while high corticosterone concentrations during stress occupy both MRs and GRs. 2. The neuronal effects of corticosterone, mediated by MRs and GRs, are long-lasting, site-specific, and conditional. The action depends on cellular context, which is in part determined by other signals that can activate their own transcription factors interacting with MR and GR. These interactions provide an impressive diversity and complexity to corticosteroid modulation of gene expression. 3. Conditions of predominant MR activation, i.e., at the circadian trough at rest, are associated with the maintenance of excitability so that steady excitatory inputs to the hippocampal CA1 area result in considerable excitatory hippocampal output. By contrast, additional GR activation, e.g., after acute stress, generally depresses the CA1 hippocampal output. A similar effect is seen after adrenalectomy, indicating a U-shaped dose-response dependency of these cellular responses after the exposure to corticosterone. 4. Corticosterone through GR blocks the stress-induced HPA activation in hypothalamic CRH neurons and modulates the activity of the excitatory and inhibitory neural inputs to these neurons. Limbic (e.g., hippocampal) MRs mediate the effect of corticosterone on the maintenance of basal HPA activity and are of relevance for the sensitivity or threshold of the central stress response system. How this control occurs is not known, but it probably involves a steady excitatory hippocampal output, which regulates a GABA-ergic inhibitory tone on PVN neurons. Colocalized hippocampal GRs mediate a counteracting (i.e., disinhibitory) influence. Through GRs in ascending aminergic pathways, corticosterone potentiates the effect of stressors and arousal on HPA activation. The functional interaction between these corticosteroid-responsive inputs at the level of the PVN is probably the key to understanding HPA dysregulation associated with stress-related brain disorders. 5. Fine-tuning of HPA regulation occurs through MR- and GR-mediated effects on the processing of information in higher brain structures. Under healthy conditions, hippocampal MRs are involved in processes underlying integration of sensory information, interpretation of environmental information, and execution of appropriate behavioral reactions. Activation of hippocampal GRs facilitates storage of information and promotes elimination of inadequate behavioral responses. These behavioral effects mediated by MR and GR are linked, but how they influence endocrine regulation is not well understood. 6. Dexamethasone preferentially targets the pituitary in the blockade of stress-induced HPA activation. The brain penetration of this synthetic glucocorticoid is hampered by the mdr1a P-glycoprotein in the blood-brain barrier. Administration of moderate amounts of dexamethasone partially depletes the brain of corticosterone, and this has destabilizing consequences for excitability and information processing. 7. The set points of HPA regulation and MR/GR balance are genetically programmed, but can be reset by early life experiences involving mother-infant interaction. 8. (ABSTRACT TRUNCATED)

摘要

在本综述中,我们描述了盐皮质激素受体(MR)和糖皮质激素受体(GR)在海马神经元中的功能。这两种皮质类固醇受体类型在这些神经元中介导的作用平衡,对于神经元兴奋性、应激反应性和行为适应性似乎至关重要。这种MR/GR平衡的失调会使神经元处于脆弱状态,对压力反应的调节产生影响,并使具有遗传易感性的个体更易患病。基于目前已知的事实,可以得出以下具体推论。1. 皮质酮以高亲和力与主要位于边缘脑区(海马)的MR结合,而与广泛分布于脑内的GR的亲和力低10倍。低基础浓度的皮质酮就能使MR接近饱和,而应激期间高浓度的皮质酮会同时占据MR和GR。2. 由MR和GR介导的皮质酮对神经元的作用是持久的、位点特异性的且有条件的。其作用取决于细胞环境,这部分由其他能够激活与MR和GR相互作用的自身转录因子的信号所决定。这些相互作用为皮质类固醇对基因表达的调节带来了令人印象深刻的多样性和复杂性。3. 主要由MR激活的情况,即在静息时的昼夜低谷期,与兴奋性的维持相关,因此对海马CA1区的稳定兴奋性输入会导致相当可观的海马兴奋性输出。相比之下,额外的GR激活,例如在急性应激后,通常会抑制海马CA1区的输出。肾上腺切除术后也会出现类似效果,表明暴露于皮质酮后这些细胞反应呈U形剂量反应依赖性。4. 皮质酮通过GR阻断下丘脑促肾上腺皮质激素释放激素(CRH)神经元中应激诱导的下丘脑-垂体-肾上腺(HPA)轴激活,并调节这些神经元的兴奋性和抑制性神经输入的活动。边缘系统(如海马)的MR介导皮质酮对基础HPA活动维持的作用,并且与中枢应激反应系统的敏感性或阈值相关。这种控制是如何发生的尚不清楚,但可能涉及稳定的海马兴奋性输出,其调节室旁核(PVN)神经元上的γ-氨基丁酸(GABA)能抑制性张力。共定位的海马GR介导一种抵消性(即去抑制性)影响。通过上行胺能通路中的GR,皮质酮增强应激源和觉醒对HPA激活的作用。这些皮质类固醇反应性输入在PVN水平上的功能相互作用可能是理解与应激相关脑疾病相关的HPA失调的关键。5. HPA调节的微调通过MR和GR对高级脑结构中信息处理的介导作用来实现。在健康状态下,海马MR参与感觉信息整合、环境信息解读以及适当行为反应执行等潜在过程。海马GR的激活促进信息存储并促进消除不适当的行为反应。由MR和GR介导的这些行为效应是相关联的,但它们如何影响内分泌调节尚不清楚。6. 地塞米松在阻断应激诱导的HPA激活时优先作用于垂体。这种合成糖皮质激素的脑内渗透受到血脑屏障中多药耐药蛋白1a(mdr1a P-糖蛋白)的阻碍。给予适量地塞米松会部分耗尽脑内的皮质酮,这会对兴奋性和信息处理产生不稳定影响。7. HPA调节的设定点和MR/GR平衡是由基因编程的,但可以通过涉及母婴互动的早期生活经历来重置。8.(摘要截断)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验