Koeppen A H
V.A. Medical Center, and Department of Neurology, Albany Medical College, NY 12208, USA.
J Neuropathol Exp Neurol. 1998 Jun;57(6):531-43. doi: 10.1097/00005072-199806000-00001.
Efforts to classify the hereditary ataxias by their clinical and neuropathological phenotypes are troubled by excessive heterogeneity. Linkage analysis opened the door to a new approach with the methods of molecular biology. The classic form of autosomal recessive ataxia, Friedreich's ataxia (FA), is now known to be due to an intronic expansion of a guanine-adenine-adenine (GAA)-trinucleotide repeat. The autosomal dominant ataxias such as olivopontocerebellar atrophy (OPCA), familial cortical cerebellar atrophy (FCCA), and Machado-Joseph disease (MJD) have been renamed the spinocerebellar ataxias (SCA). Specific gene loci are indicated as SCA-1, SCA-2, SCA-3, SCA-4, SCA-5, SCA-6, and SCA-7. In 5 of them (SCA-1, SCA-2, SCA-3, SCA-6, and SCA-7), expanded cytosine-adenine-guanine (CAG)-trinucleotide repeats and their abnormal gene products cause the ataxic condition. The most common underlying loci for olivopontocerebellar atrophy (OPCA) are SCA-1 and SCA-2, although other genotypes may be added in the future. A major recent advance was the identification of the gene for SCA-3 and MJD, and the high prevalence of this form of autosomal dominant ataxia. In FA and the SCA with expanded CAG-trinucleotide repeats, clinical and neuropathological severity are inversely correlated with the lengths of the repeats. Anticipation in the dominant ataxias can now be explained by lengthening of the repeats in successive generations. Progress is being made in the understanding of the pathogenesis of FA and SCA as the absent or mutated gene products are studied by immunocytochemistry in human and transgenic murine brain tissue. In FA, frataxin is diminished or absent, and an excess of mitochondrial iron may cause the illness of the nervous system and the heart. In SCA-3, abnormal ataxin-3 is aggregated in neuronal nuclei, and in SCA-6, a mutated alpha1A-calcium channel protein is the likely cause of abnormal calcium channel function in Purkinje cells and in the death of these neurons.
通过临床和神经病理表型对遗传性共济失调进行分类的努力因过度的异质性而陷入困境。连锁分析为采用分子生物学方法的新途径打开了大门。常染色体隐性共济失调的经典形式,即弗里德赖希共济失调(FA),现在已知是由于鸟嘌呤 - 腺嘌呤 - 腺嘌呤(GAA)三核苷酸重复序列在内含子中的扩增所致。常染色体显性共济失调,如橄榄桥脑小脑萎缩(OPCA)、家族性皮质小脑萎缩(FCCA)和马查多 - 约瑟夫病(MJD),现已重新命名为脊髓小脑共济失调(SCA)。特定的基因位点表示为SCA - 1、SCA - 2、SCA - 3、SCA - 4、SCA - 5、SCA - 6和SCA - 7。其中5种(SCA - 1、SCA - 2、SCA - 3、SCA - 6和SCA - 7)中,胞嘧啶 - 腺嘌呤 - 鸟嘌呤(CAG)三核苷酸重复序列的扩增及其异常的基因产物导致共济失调状态。橄榄桥脑小脑萎缩(OPCA)最常见的潜在基因位点是SCA - 1和SCA - 2,不过未来可能会发现其他基因型。最近的一项重大进展是确定了SCA - 3和MJD的基因,以及这种常染色体显性共济失调形式的高患病率。在FA和具有扩增CAG三核苷酸重复序列的SCA中,临床和神经病理严重程度与重复序列的长度呈负相关。现在可以通过连续几代中重复序列的延长来解释显性共济失调中的遗传早现现象。随着通过免疫细胞化学在人类和转基因鼠脑组织中研究缺失或突变的基因产物,在理解FA和SCA的发病机制方面正在取得进展。在FA中,frataxin减少或缺失,线粒体铁过量可能导致神经系统和心脏疾病。在SCA - 3中,异常的ataxin - 3聚集在神经元细胞核中,而在SCA - 6中,突变的α1A - 钙通道蛋白可能是浦肯野细胞中钙通道功能异常以及这些神经元死亡的原因。