Han C H, Freeman J L, Lee T, Motalebi S A, Lambeth J D
Department of Biochemistry, Emory University Medical School, Atlanta, Georgia 30322, USA.
J Biol Chem. 1998 Jul 3;273(27):16663-8. doi: 10.1074/jbc.273.27.16663.
Superoxide generation by the neutrophil respiratory burst oxidase (NADPH oxidase) can be reconstituted in a cell-free system using flavocytochrome b558 and the cytosolic proteins p47(phox), p67(phox), and Rac. p47(phox) functions as an adaptor protein; it increases the affinity of p67(phox) and Rac in the NADPH oxidase complex, but is not essential when high concentrations of these proteins are used (Freeman, J. L., and Lambeth, J. D. (1996) J. Biol. Chem. 271, 22578-22582), implying that p67(phox) and/or Rac directly regulates enzyme activity. Herein, we describe an activation domain in p67(phox) that is essential for NADPH oxidase activity. A series of C-terminal truncation mutants of p67(phox) showed that residues 211 to the C terminus (residue 526) are not needed for cell-free activity. However, shorter truncations were inactive, pointing to an activation domain within the region spanning residues 199-210. p67(phox) mutated at single amino acid residues within this region showed diminished activity, and p67(phox) V204A was completely inactive. The effects of mutations on activity were independent of p47(phox), and mutations did not affect the binding of p67(phox) to Rac. In the presence of wild-type p67(phox), the V204A mutant was a potent inhibitor of superoxide generation, and inhibition was partially reversed by high concentrations of p67(phox), but not by p47(phox) or Rac. The V204A mutant competed with native p67(phox) for translocation to neutrophil plasma membrane, indicating that p67(phox) V204A assembles to form an inactive complex. The data imply a direct activation of flavocytochrome b558 by an activation domain in p67(phox).
嗜中性粒细胞呼吸爆发氧化酶(NADPH氧化酶)产生超氧化物的过程可以在无细胞系统中通过黄素细胞色素b558以及胞质蛋白p47(phox)、p67(phox)和Rac来重建。p47(phox)作为一种衔接蛋白发挥作用;它增加了p67(phox)和Rac在NADPH氧化酶复合物中的亲和力,但当使用高浓度的这些蛋白时它并非必需(弗里曼,J.L.,和兰贝斯,J.D.(1996年)《生物化学杂志》271,22578 - 22582),这意味着p67(phox)和/或Rac直接调节酶活性。在此,我们描述了p67(phox)中一个对NADPH氧化酶活性至关重要的激活结构域。一系列p67(phox)的C末端截短突变体表明,对于无细胞活性而言,211位残基至C末端(526位残基)并非必需。然而,更短的截短体没有活性,这表明在199 - 210位残基区域内存在一个激活结构域。在该区域内单个氨基酸残基发生突变的p67(phox)活性降低,并且p67(phox)V204A完全没有活性。突变对活性的影响独立于p47(phox),并且突变不影响p67(phox)与Rac的结合。在野生型p67(phox)存在的情况下,V(204A)突变体是超氧化物产生的有效抑制剂,并且高浓度的p67(phox)可部分逆转这种抑制作用,但p47(phox)或Rac则不能。V204A突变体与天然p67(phox)竞争转位至嗜中性粒细胞质膜,这表明p67(phox)V204A组装形成了一个无活性的复合物。这些数据表明p67(phox)中的一个激活结构域可直接激活黄素细胞色素b558。