Suppr超能文献

连续极限下的信息损失与电磁场中的薛定谔方程。

Information loss in the continuum limit and Schrödinger's equation in an electromagnetic field.

作者信息

Ord G N, Gualtieri J A

机构信息

MPCS Ryerson Polytechnical University, Toronto, Ont., Canada.

出版信息

Biosystems. 1998 Apr;46(1-2):21-8. doi: 10.1016/s0303-2647(97)00077-4.

Abstract

Since the time of Einstein's work on Brownian motion it has been known that random walks provide a microscopic model for the diffusion equation. Less well known is the fact that some instances of Schrödinger's equation occur naturally in the description of the statistics of these same walks and thus have classical contexts which are distinct from their usual association with quantum mechanics. An interesting feature of these models is the fact that the information which relates Schrödinger's equation to its classical context is not contained in the partial differential equation itself, but is lost in the continuum limit which gives rise to the equation. In this article we illustrate the above by showing that Schrödinger's equation for a particle in an electromagnetic field in 1 + 1 dimension occurs as a continuum limit of a description of a classical system of point particles on a lattice. The derivation shows that the information lost in the continuum limit is necessary to link the mathematics to the physical context of the equation.

摘要

自爱因斯坦研究布朗运动以来,人们就知道随机游走为扩散方程提供了一个微观模型。鲜为人知的是,薛定谔方程的某些情况在描述这些相同游走的统计时自然出现,因此具有与它们通常与量子力学的关联不同的经典背景。这些模型的一个有趣特征是,将薛定谔方程与其经典背景联系起来的信息并不包含在偏微分方程本身中,而是在产生该方程的连续极限中丢失了。在本文中,我们通过表明一维时空中处于电磁场中的粒子的薛定谔方程是晶格上点粒子经典系统描述的连续极限来阐述上述内容。推导表明,在连续极限中丢失的信息对于将数学与方程的物理背景联系起来是必要的。

相似文献

1
Information loss in the continuum limit and Schrödinger's equation in an electromagnetic field.
Biosystems. 1998 Apr;46(1-2):21-8. doi: 10.1016/s0303-2647(97)00077-4.
3
Everyman's derivation of the theory of atoms in molecules.
J Phys Chem A. 2007 Aug 16;111(32):7966-72. doi: 10.1021/jp073213k. Epub 2007 Jul 13.
4
Random walks, continuum limits, and Schrödinger's equation.
Phys Rev A. 1996 Nov;54(5):3772-3778. doi: 10.1103/physreva.54.3772.
5
A Fluid Perspective of Relativistic Quantum Mechanics.
Entropy (Basel). 2023 Oct 30;25(11):1497. doi: 10.3390/e25111497.
6
First-passage time: lattice versus continuum.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):032104. doi: 10.1103/PhysRevE.86.032104. Epub 2012 Sep 11.
7
Fractional-calculus diffusion equation.
Nonlinear Biomed Phys. 2010 May 21;4:3. doi: 10.1186/1753-4631-4-3.
8
Minimum Copies of Schrödinger's Cat State in the Multi-Photon System.
Sci Rep. 2016 Aug 31;6:32057. doi: 10.1038/srep32057.
9
Uniqueness of the equation for quantum state vector collapse.
Phys Rev Lett. 2013 Nov 22;111(21):210401. doi: 10.1103/PhysRevLett.111.210401. Epub 2013 Nov 18.
10
Convergence of empirical distributions in an interpretation of quantum mechanics.
Ann Appl Probab. 2016 Aug;26(4):2540-2555. doi: 10.1214/15-AAP1154. Epub 2016 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验