Tolias K F, Rameh L E, Ishihara H, Shibasaki Y, Chen J, Prestwich G D, Cantley L C, Carpenter C L
Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
J Biol Chem. 1998 Jul 17;273(29):18040-6. doi: 10.1074/jbc.273.29.18040.
Inositol phospholipids regulate a variety of cellular processes including proliferation, survival, vesicular trafficking, and cytoskeletal organization. Recently, two novel phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PtdIns-3,5-P2) and phosphatidylinositol- 5-phosphate (PtdIns-5-P), have been shown to exist in cells. PtdIns-3,5-P2, which is regulated by osmotic stress, appears to be synthesized by phosphorylation of PtdIns-3-P at the D-5 position. No evidence yet exists for how PtdIns-5-P is produced in cells. Understanding the regulation of synthesis of these molecules will be important for identifying their function in cellular signaling. To determine the pathway by which PtdIns-3,5-P2 and Ptd-Ins-5-P might be synthesized, we tested the ability of the recently cloned type I PtdIns-4-P 5-kinases (PIP5Ks) alpha and beta to phosphorylate PtdIns-3-P and PtdIns at the D-5 position of the inositol ring. We found that the type I PIP5Ks phosphorylate PtdIns-3-P to form PtdIns-3,5-P2. The identity of the PtdIns-3,5-P2 product was determined by anion exchange high performance liquid chromatography analysis and periodate treatment. PtdIns-3,4-P2 and PtdIns-3,4,5-P3 were also produced from PtdIns-3-P phosphorylation by both isoforms. When expressed in mammalian cells, PIP5K Ialpha and PIP5K Ibeta differed in their ability to synthesize PtdIns-3,5-P2 relative to PtdIns-3,4-P2. We also found that the type I PIP5Ks phosphorylate PtdIns to produce PtdIns-5-P and phosphorylate PtdIns-3,4-P2 to produce PtdIns-3,4,5-P3. Our findings suggest that type I PIP5Ks synthesize the novel phospholipids PtdIns-3,5-P2 and PtdIns-5-P. The ability of PIP5Ks to produce multiple signaling molecules indicates that they may participate in a variety of cellular processes.
肌醇磷脂调节多种细胞过程,包括增殖、存活、囊泡运输和细胞骨架组织。最近,已证明细胞中存在两种新型磷酸肌醇,即磷脂酰肌醇-3,5-二磷酸(PtdIns-3,5-P2)和磷脂酰肌醇-5-磷酸(PtdIns-5-P)。受渗透应激调节的PtdIns-3,5-P2似乎是由PtdIns-3-P在D-5位磷酸化合成的。目前尚无关于细胞中如何产生PtdIns-5-P的证据。了解这些分子的合成调节对于确定它们在细胞信号传导中的功能很重要。为了确定PtdIns-3,5-P2和PtdIns-5-P可能的合成途径,我们测试了最近克隆的I型磷脂酰肌醇-4-磷酸5-激酶(PIP5Ks)α和β在肌醇环D-5位磷酸化PtdIns-3-P和磷脂酰肌醇(PtdIns)的能力。我们发现I型PIP5Ks将PtdIns-3-P磷酸化形成PtdIns-3,5-P2。通过阴离子交换高效液相色谱分析和高碘酸盐处理确定了PtdIns-3,5-P2产物的身份。两种亚型通过PtdIns-3-P磷酸化还产生了磷脂酰肌醇-3,4-二磷酸(PtdIns-3,4-P2)和磷脂酰肌醇-3,4,5-三磷酸(PtdIns-3,4,5-P3)。当在哺乳动物细胞中表达时,PIP5K Iα和PIP5K Iβ在合成PtdIns-3,5-P2相对于PtdIns-3,4-P2的能力上有所不同。我们还发现I型PIP5Ks将PtdIns磷酸化产生PtdIns-5-P,并将PtdIns-3,4-P2磷酸化产生PtdIns-3,4,5-P3。我们的研究结果表明I型PIP5Ks合成了新型磷脂PtdIns-3,5-P2和PtdIns-5-P。PIP5Ks产生多种信号分子的能力表明它们可能参与多种细胞过程。