Hansen P A, Wang W, Marshall B A, Holloszy J O, Mueckler M
Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
J Biol Chem. 1998 Jul 17;273(29):18173-9. doi: 10.1074/jbc.273.29.18173.
Overexpression of the human GLUT1 glucose transporter protein in skeletal muscle of transgenic mice results in large increases in basal glucose transport and metabolism, but impaired stimulation of glucose transport by insulin, contractions, or hypoxia (Gulve, E. A., Ren, J.-M., Marshall, B. A., Gao, J., Hansen, P. A., Holloszy, J. O. , and Mueckler, M. (1994) J. Biol. Chem. 269, 18366-18370). This study examined the relationship between glucose transport and cell-surface glucose transporter content in isolated skeletal muscle from wild-type and GLUT1-overexpressing mice using 2-deoxyglucose, 3-O-methylglucose, and the 2-N-[4-(1-azi-2,2, 2-trifluoroethyl)benzoyl]-1,3-bis(D-mannos-4-yloxy)-2-propyl amine exofacial photolabeling technique. Insulin (2 milliunits/ml) stimulated a 3-fold increase in 2-deoxyglucose uptake in extensor digitorum longus muscles of control mice (0.47 +/- 0.07 micromol/ml/20 min in basal muscle versus 1.44 micromol/ml/20 min in insulin-stimulated muscle; mean +/- S.E.). Insulin failed to increase 2-deoxyglucose uptake above basal rates in muscles overexpressing GLUT1 (4.00 +/- 0.40 micromol/ml/20 min in basal muscle versus 3.96 +/- 0.37 micromol/ml/20 min in insulin-stimulated muscle). A similar lack of insulin stimulation in muscles overexpressing GLUT1 was observed using 3-O-methylglucose. However, the magnitude of the insulin-stimulated increase in cell-surface GLUT4 photolabeling was nearly identical (approximately 3-fold) in wild-type and GLUT1-overexpressing muscles. This apparently normal insulin-stimulated translocation of GLUT4 in GLUT1-overexpressing muscle was confirmed by immunoelectron microscopy. Our findings suggest that GLUT4 activity at the plasma membrane can be dissociated from the plasma membrane content of GLUT4 molecules and thus suggest that the intrinsic activity of GLUT4 is subject to regulation.
在转基因小鼠的骨骼肌中,人GLUT1葡萄糖转运蛋白的过表达导致基础葡萄糖转运和代谢大幅增加,但胰岛素、收缩或缺氧对葡萄糖转运的刺激作用受损(古尔夫,E.A.,任,J.-M.,马歇尔,B.A.,高,J.,汉森,P.A.,霍洛兹伊,J.O.,和米克勒,M.(1994年)《生物化学杂志》269,18366 - 18370)。本研究使用2 - 脱氧葡萄糖、3 - O - 甲基葡萄糖以及2 - N - [4 - (1 - 叠氮 - 2,2,2 - 三氟乙基)苯甲酰基] - 1,3 - 双(D - 甘露糖 - 4 - 氧基) - 2 - 丙胺外表面光标记技术,研究了野生型和GLUT1过表达小鼠分离的骨骼肌中葡萄糖转运与细胞表面葡萄糖转运蛋白含量之间的关系。胰岛素(2毫单位/毫升)刺激对照小鼠趾长伸肌中2 - 脱氧葡萄糖摄取增加3倍(基础肌肉中为0.47±0.07微摩尔/毫升/20分钟,胰岛素刺激的肌肉中为1.44微摩尔/毫升/20分钟;平均值±标准误)。在过表达GLUT1的肌肉中,胰岛素未能使2 - 脱氧葡萄糖摄取高于基础速率(基础肌肉中为4.00±0.40微摩尔/毫升/20分钟,胰岛素刺激的肌肉中为3.96±0.37微摩尔/毫升/20分钟)。使用3 - O - 甲基葡萄糖时,在过表达GLUT1的肌肉中也观察到类似的胰岛素刺激缺乏情况。然而,在野生型和过表达GLUT1的肌肉中,胰岛素刺激的细胞表面GLUT4光标记增加幅度几乎相同(约3倍)。免疫电子显微镜证实了在过表达GLUT1的肌肉中,GLUT4这种明显正常的胰岛素刺激转位。我们的研究结果表明,质膜上的GLUT4活性可以与GLUT4分子的质膜含量分离,因此表明GLUT4的内在活性受到调控。