Stewart R J, Fredenburgh J C, Weitz J I
Hamilton Civic Hospitals Research Centre and McMaster University, Hamilton, Ontario, L8V 1C3 Canada.
J Biol Chem. 1998 Jul 17;273(29):18292-9. doi: 10.1074/jbc.273.29.18292.
Vampire bat plasminogen activator (b-PA) causes less fibrinogen (Fg) consumption than tissue-type plasminogen activator (t-PA). Herein, we demonstrate that this occurs because the complex of D-dimer noncovalently linked to fragment E ((DD)E), the most abundant degradation product of cross-linked fibrin, as well as Fg, stimulate plasminogen (Pg) activation by t-PA more than b-PA. To explain these findings, we characterized the interactions of t-PA, b-PA, Lys-Pg, and Glu-Pg with Fg and (DD)E using right angle light scattering spectroscopy. In addition, interactions with fibrin were determined by clotting Fg in the presence of various amounts of t-PA, b-PA, Lys-Pg, or Glu-Pg and quantifying unbound material in the supernatant after centrifugation. Glu-Pg and Lys-Pg bind fibrin with Kd values of 13 and 0.13 microM, respectively. t-PA binds fibrin through two classes of sites with Kd values of 0.05 and 2.6 microM, respectively. The second kringle (K2) of t-PA mediates the low affinity binding that is eliminated with epsilon-amino-n-caproic acid. In contrast, b-PA binds fibrin through a single kringle-independent site with a Kd of 0.15 microM. t-PA competes with b-PA for fibrin binding, indicating that both activators share the same finger-dependent site on fibrin. Glu-Pg binds (DD)E with a Kd of 5.4 microM. Lys-Pg binds to (DD)E and Fg with Kd values of 0.03 and 0.23 microM, respectively. t-PA binds to (DD)E and Fg with Kd values of 0.02 and 0.76 microM, respectively; interactions were eliminated with epsilon-amino-n-caproic acid, consistent with K2-dependent binding. Because it lacks a K2-domain, b-PA does not bind to either (DD)E or Fg, thereby explaining why b-PA is more fibrin-specific than t-PA.
吸血蝙蝠纤溶酶原激活剂(b-PA)比组织型纤溶酶原激活剂(t-PA)消耗的纤维蛋白原(Fg)更少。在此,我们证明出现这种情况的原因是,与片段E非共价连接的D-二聚体复合物((DD)E),即交联纤维蛋白最丰富的降解产物,以及Fg,对t-PA刺激纤溶酶原(Pg)激活的作用大于b-PA。为了解释这些发现,我们使用直角光散射光谱法对t-PA、b-PA、赖氨酸纤溶酶原(Lys-Pg)和谷氨酸纤溶酶原(Glu-Pg)与Fg和(DD)E的相互作用进行了表征。此外,通过在存在不同量的t-PA、b-PA、Lys-Pg或Glu-Pg的情况下使Fg凝固,并对离心后上清液中的未结合物质进行定量,来确定与纤维蛋白的相互作用。Glu-Pg和Lys-Pg与纤维蛋白结合的解离常数(Kd)值分别为13和0.13微摩尔/升。t-PA通过两类位点与纤维蛋白结合,Kd值分别为0.05和2.6微摩尔/升。t-PA的第二个kringle结构域(K2)介导低亲和力结合,这种结合可被ε-氨基-n-己酸消除。相比之下,b-PA通过一个不依赖kringle的位点与纤维蛋白结合,Kd为0.15微摩尔/升。t-PA与b-PA竞争纤维蛋白结合,表明这两种激活剂在纤维蛋白上共享相同的依赖指状结构域的位点。Glu-Pg与(DD)E结合的Kd为5.4微摩尔/升。Lys-Pg与(DD)E和Fg结合的Kd值分别为0.03和0.23微摩尔/升。t-PA与(DD)E和Fg结合的Kd值分别为0.02和0.76微摩尔/升;这些相互作用被ε-氨基-n-己酸消除,这与依赖K2的结合一致。由于b-PA缺乏K2结构域,它既不与(DD)E结合也不与Fg结合,从而解释了为什么b-PA比t-PA对纤维蛋白更具特异性。