Vaziri C, Stice L, Faller D V
Cancer Research Center, Boston University School of Medicine, Massachusetts 02118, USA.
Cell Growth Differ. 1998 Jun;9(6):465-74.
When treated with millimolar concentrations of butyrate, many cell types undergo growth arrest in the G1 phase of the cell cycle. However, the molecular basis of butyrate-induced G1 arrest has not been elucidated. We have investigated the molecular mechanisms of butyrate-induced G1 arrest in synchronized cultures of untransformed 3T3 fibroblasts. We tested the hypothesis that butyrate-induced growth arrest might be mediated by the p21 cyclin-dependent kinase inhibitor. Sodium butyrate-treated 3T3 cells did, indeed, express elevated levels of p21 mRNA under conditions of G1 arrest. Surprisingly, however, primary cultures of fibroblasts from transgenic p21 "knockout" (p21-/-) mice and fibroblasts from wild-type p21-proficient (p21+/+) mice underwent butyrate-induced G1 arrest with similar dose dependencies. Therefore, p21 expression was not necessary for butyrate-induced G1 arrest. To identify other potential mechanisms of butyrate-induced growth arrest, we analyzed the butyrate sensitivity of key mitogenic signaling events during G1. We found that butyrate inhibited the mitogen-dependent transcriptional induction of cyclin D1 and phosphorylation of retinoblastoma (Rb), both in p21-proficient 3T3 cells and in p21+/+ and p21-/- mouse embryo fibroblasts. Butyrate treatment also prevented mitogen-dependent transcriptional induction of cyclin E and expression of cyclin A, cell cycle events that are temporally distal to expression of cyclin D and are necessary for entry into S phase. Abrogation of a requirement for cyclin D/cyclin-dependent kinase-dependent phosphorylation of Rb (by ectopic expression of the human papilloma virus E7 oncoprotein in 3T3 cells) resulted in decreased sensitivity to the antiproliferative actions of butyrate. Overall, these data show that butyrate-induced G1 arrest is, in large part, independent of p21 induction. Instead, butyrate-induced growth arrest appears to result from perturbation of the Rb signaling axis at the level of or at a stage prior to cyclin D1 expression.
当用毫摩尔浓度的丁酸盐处理时,许多细胞类型在细胞周期的G1期发生生长停滞。然而,丁酸盐诱导G1期停滞的分子基础尚未阐明。我们研究了丁酸盐诱导未转化的3T3成纤维细胞同步培养物中G1期停滞的分子机制。我们检验了丁酸盐诱导的生长停滞可能由p21细胞周期蛋白依赖性激酶抑制剂介导的假说。在G1期停滞的条件下,丁酸钠处理的3T3细胞确实表达了升高水平的p21 mRNA。然而,令人惊讶的是,来自转基因p21“敲除”(p21-/-)小鼠的成纤维细胞原代培养物和来自野生型p21功能正常(p21+/+)小鼠的成纤维细胞在丁酸盐诱导的G1期停滞中具有相似的剂量依赖性。因此,p21表达对于丁酸盐诱导的G1期停滞不是必需的。为了确定丁酸盐诱导生长停滞的其他潜在机制,我们分析了G1期关键有丝分裂信号事件对丁酸盐的敏感性。我们发现,在p21功能正常的3T3细胞以及p21+/+和p21-/-小鼠胚胎成纤维细胞中,丁酸盐均抑制细胞周期蛋白D1的有丝分裂原依赖性转录诱导以及视网膜母细胞瘤(Rb)的磷酸化。丁酸盐处理还阻止了细胞周期蛋白E的有丝分裂原依赖性转录诱导和细胞周期蛋白A的表达,这些细胞周期事件在时间上晚于细胞周期蛋白D的表达,并且是进入S期所必需的。消除对Rb的细胞周期蛋白D/细胞周期蛋白依赖性激酶依赖性磷酸化的需求(通过在3T3细胞中异位表达人乳头瘤病毒E7癌蛋白)导致对丁酸盐抗增殖作用的敏感性降低。总体而言,这些数据表明,丁酸盐诱导的G1期停滞在很大程度上独立于p21诱导。相反,丁酸盐诱导的生长停滞似乎是由于在细胞周期蛋白D1表达水平或之前阶段的Rb信号轴受到干扰所致。