Otto M R, Bloom L B, Goodman M F, Beechem J M
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA.
Biochemistry. 1998 Jul 14;37(28):10156-63. doi: 10.1021/bi9800754.
DNA polymerases are complex enzymes which bind primer-template DNA and subsequently either extend or excise the terminal nucleotide on the primer strand. In this study, a stopped-flow fluorescence anisotropy binding assay is combined with real-time measurements of a fluorescent adenine analogue (2-aminopurine) located at the 3'-primer terminus. Using this combined approach, the exact time course associated with protein binding, primer terminus unstacking, and base excision by the 3' --> 5' exonuclease of bacteriophage T4 (T4 pol) was examined. T4 pol binding and dissociation kinetics were found to obey simple kinetics, with identical on rates (kon = 4.6 x 10(8) M-1 s-1) and off rates (koff = 9.3 s-1) for both single-stranded primers and double-stranded primer-templates (at 100 microM Mg2+). Although the time course for T4 pol-DNA association and dissociation obeyed simple kinetics, at suboptimal Mg2+ concentrations (e.g., 100 microM), non-first-order sigmoidal kinetics were observed for the base-unstacking reaction of the primer terminus in double-stranded primer-templates. The observed sigmoidal kinetics for base unstacking demonstrate that T4 pol is a hysteretic enzyme [Frieden, C. (1970) J. Biol. Chem. 245, 5788-5799] and must exist in two DNA bound conformations which differ greatly in base-unstacking properties. A Mg2+-dependent time lag of 10 ms is observed between primer-template binding and the beginning of the unstacking transition, which is 50% complete at 22 +/- 1 ms after addition of 100 microM Mg2+. Following the hysteretic lag, a simple first-order primer terminus unstacking rate of 130 s-1 is resolved, which is protein and Mg2+ concentration-independent. For the processing of single-stranded primers, all kinetic complexity is lost, and T4 pol binding and primer end base-unstacking kinetics can be superimposed. These data reveal that the kinetic processing of double-stranded primer-template DNA by T4 pol is much more complex than that of single-stranded primers, and suggest that the intrinsic "switching rate" between the polymerase and exonuclease sites may be much faster than previously proposed.
DNA聚合酶是复杂的酶,它能结合引物-模板DNA,随后延伸或切除引物链上的末端核苷酸。在本研究中,将停流荧光各向异性结合测定法与对位于3'-引物末端的荧光腺嘌呤类似物(2-氨基嘌呤)的实时测量相结合。使用这种联合方法,研究了与噬菌体T4(T4 pol)的3'→5'外切核酸酶的蛋白质结合、引物末端解堆叠和碱基切除相关的确切时间进程。发现T4 pol的结合和解离动力学遵循简单动力学,对于单链引物和双链引物-模板(在100μM Mg2+下),其结合速率(kon = 4.6 x 10(8) M-1 s-1)和解离速率(koff = 9.3 s-1)相同。尽管T4 pol与DNA结合和解离的时间进程遵循简单动力学,但在次优Mg2+浓度(例如100μM)下,双链引物-模板中引物末端的碱基解堆叠反应观察到非一级S形动力学。观察到的碱基解堆叠的S形动力学表明T4 pol是一种滞后酶[弗里登,C.(1970年)《生物化学杂志》245,5788 - 5799],并且必须以两种在碱基解堆叠性质上有很大差异的DNA结合构象存在。在引物-模板结合和解堆叠转变开始之间观察到10毫秒的Mg2+依赖性时间延迟,在加入100μM Mg2+后22±1毫秒时完成50%。在滞后延迟之后,解析出130 s-1的简单一级引物末端解堆叠速率,该速率与蛋白质和Mg2+浓度无关。对于单链引物的处理,所有动力学复杂性都消失了,并且T4 pol结合和引物末端碱基解堆叠动力学可以叠加。这些数据表明,T4 pol对双链引物-模板DNA的动力学处理比单链引物复杂得多,并表明聚合酶和外切核酸酶位点之间的内在“转换速率”可能比先前提出的要快得多。