Packer M J, Hunter C A
Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, England.
J Mol Biol. 1998 Jul 17;280(3):407-20. doi: 10.1006/jmbi.1998.1865.
A detailed analysis of the coupling between the conformational properties of the sugar-phosphate backbone and the base stacking interactions in dinucleotide steps of double helical DNA is described. In X-ray crystal structures of oligonucleotides, the backbone shows one major degree of freedom, consisting of the torsion angles chi, delta, zeta and the pseudorotation phase angle, P. The remaining torsion angles (beta, epsilon, alpha and gamma) comprise two less important degrees of freedom. The base stacking interactions show three degrees of freedom: slide-roll-twist, shift-tilt, and rise (which is more or less constant). Coupling is observed between the base and backbone degrees of freedom. The major base stacking mode, slide-roll-twist, is coupled to the major backbone mode, chi-P-delta-zeta. The secondary base stacking mode, shift-tilt, is coupled to epsilon and zeta and to a lesser extent to the chi-P-delta-zeta mode. We show that the length of the backbone, C, given by the same strand C1'-C1' separation, is an excellent single parameter descriptor for the conformation of the backbone and the way in which it is coupled to the base stacking geometry. The slide-roll-twist motion relates to changes in the mean backbone length, C, and the shift-tilt motion to the difference between the lengths of the two backbone strands, DeltaC. We use this observation to develop a simple virtual bond model which describes the coupling of the backbone conformations and the base stacking geometry. A semi-flexible bond is used to connect the same strand C1'-C1' atoms. Analysis of the X-ray crystal structure database, simple geometric considerations and model building experiments all show that this bond is flexible with respect to slide, shift and propeller but rigid with respect to the other 14 local base stacking parameters. Using this simple model for the backbone in conjunction with potential energy calculations of the base stacking interactions, we show that it is possible to predict accurately the values of these 14 base step parameters, given values of slide, shift and propeller. We also show that the base step parameters fall into three distinct groups: roll, tilt and rise are determined solely by the base stacking interactions and are independent of the backbone; twist is insensitive to the base stacking interactions and is determined solely by the constraints of a relatively rigid fixed length backbone; slide and shift are the primary degrees of freedom and cannot be predicted accurately at the dinucleotide level because they are influenced by the conformations of neighbouring steps in a sequence. We have found that the context effect on slide is mediated by the chi torsion angles while the context effect on shift results from a BI to BII transition in the backbone. We have therefore reduced the dimensionality of the dinucleotide step problem to two parameters, slide and shift.
本文描述了对双螺旋DNA二核苷酸步中糖-磷酸主链的构象性质与碱基堆积相互作用之间耦合的详细分析。在寡核苷酸的X射线晶体结构中,主链显示出一个主要的自由度,由扭转角χ、δ、ζ和假旋转相角P组成。其余的扭转角(β、ε、α和γ)构成两个不太重要的自由度。碱基堆积相互作用显示出三个自由度:滑动-滚动-扭转、移动-倾斜和上升(上升或多或少是恒定的)。在碱基和主链自由度之间观察到了耦合。主要的碱基堆积模式,即滑动-滚动-扭转,与主要的主链模式χ-P-δ-ζ耦合。次要的碱基堆积模式,即移动-倾斜,与ε和ζ耦合,并且在较小程度上与χ-P-δ-ζ模式耦合。我们表明,由同一条链的C1'-C1'间距给出的主链长度C,是主链构象及其与碱基堆积几何结构耦合方式的一个出色的单参数描述符。滑动-滚动-扭转运动与平均主链长度C的变化有关,而移动-倾斜运动与两条主链链段长度的差异ΔC有关。我们利用这一观察结果开发了一个简单的虚拟键模型,该模型描述了主链构象与碱基堆积几何结构的耦合。使用一个半柔性键连接同一条链的C1'-C1'原子。对X射线晶体结构数据库的分析、简单的几何考虑和模型构建实验都表明,该键在滑动、移动和螺旋桨扭转方面是灵活的,但在其他14个局部碱基堆积参数方面是刚性的。将这个简单的主链模型与碱基堆积相互作用的势能计算相结合,我们表明,给定滑动、移动和螺旋桨扭转的值,可以准确预测这14个碱基步参数的值。我们还表明,碱基步参数分为三个不同的组:滚动、倾斜和上升仅由碱基堆积相互作用决定,与主链无关;扭转对碱基堆积相互作用不敏感,仅由相对刚性的固定长度主链的限制决定;滑动和移动是主要的自由度,在二核苷酸水平上无法准确预测,因为它们受到序列中相邻步构象的影响。我们发现,对滑动的上下文效应由χ扭转角介导,而对移动的上下文效应源于主链中从BI到BII的转变。因此,我们将二核苷酸步问题的维度减少到了两个参数,即滑动和移动。