Okamoto A, Nakai Y, Hayashi H, Hirotsu K, Kagamiyama H
Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka, 569-8686, Japan.
J Mol Biol. 1998 Jul 17;280(3):443-61. doi: 10.1006/jmbi.1998.1869.
Aminotransferase reversibly catalyzes the transamination reaction by a ping-pong bi-bi mechanism with pyridoxal 5'-phosphate (PLP) as a cofactor. Various kinds of aminotransferases developing into catalysts for particular substrates have been reported. Among the aminotransferases, aromatic amino acid aminotransferase (EC 2.6.1. 57) catalyzes the transamination reaction with both acidic substrates and aromatic substrates. To elucidate the multiple substrate recognition mechanism, we determined the crystal structures of aromatic amino acid aminotransferase from Paracoccus denitrificans (pdAroAT): unliganded pdAroAT, pdAroAT in a complex with maleate as an acidic substrate analog, and pdAroAT in a complex with 3-phenylpropionate as an aromatic substrate analog at 2.33 A, 2. 50 A and 2.30 A resolution, respectively. The pdAroAT molecule is a homo-dimer. Each subunit has 394 amino acids and one PLP and is divided into small and large domains. The overall structure of pdAroAT is essentially identical to that of aspartate aminotransferase (AspAT) which catalyzes the transamination reaction with only an acidic amino acid. On binding the acidic substrate analog, arginine 292 and 386 form end-on salt bridges with carboxylates of the analog. Furthermore, binding of the substrate induces the domain movement to close the active site. The recognition mechanism for the acidic substrate analog in pdAroAT is identical to that observed in AspAT. Binding of the aromatic substrate analog causes reorientation of the side-chain of the residues, lysine 16, asparagine 142, arginine 292* and serine 296*, and changes in the position of water molecules in the active site to form a new hydrogen bond network in contrast to the active site structure of pdAroAT in the complex with an acidic substrate analog. Consequently, the rearrangement of the hydrogen bond network can form recognition sites for both acidic and aromatic side-chains of the substrate without a conformational change in the backbone structure in pdAroAT.
转氨酶以磷酸吡哆醛(PLP)为辅因子,通过乒乓双底物机制可逆地催化转氨反应。据报道,各种转氨酶已发展成为特定底物的催化剂。在转氨酶中,芳香族氨基酸转氨酶(EC 2.6.1.57)催化酸性底物和芳香族底物的转氨反应。为阐明多种底物识别机制,我们测定了反硝化副球菌芳香族氨基酸转氨酶(pdAroAT)的晶体结构:无配体的pdAroAT、与作为酸性底物类似物的马来酸形成复合物的pdAroAT,以及与作为芳香族底物类似物的3-苯丙酸形成复合物的pdAroAT,分辨率分别为2.33 Å、2.50 Å和2.30 Å。pdAroAT分子为同型二聚体。每个亚基有394个氨基酸和一个PLP,分为小结构域和大结构域。pdAroAT的整体结构与仅催化酸性氨基酸转氨反应的天冬氨酸转氨酶(AspAT)基本相同。在结合酸性底物类似物时,精氨酸292和386与类似物的羧酸盐形成端对端盐桥。此外,底物的结合诱导结构域移动以关闭活性位点。pdAroAT中酸性底物类似物的识别机制与在AspAT中观察到的相同。芳香族底物类似物的结合导致赖氨酸16、天冬酰胺142、精氨酸292和丝氨酸296残基侧链重新定向,以及活性位点中水分子位置的变化,从而形成与酸性底物类似物复合物中pdAroAT活性位点结构不同的新氢键网络。因此,氢键网络的重排可在pdAroAT主链结构无构象变化的情况下形成底物酸性和芳香族侧链的识别位点。