Polischuk T M, Jarvis C R, Andrew R D
Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada.
Neurobiol Dis. 1998 Apr;4(6):423-37. doi: 10.1006/nbdi.1998.0172.
Using the seafood contaminant domoic acid (an AMPA/kainate receptor agonist), we demonstrate a distinct excitotoxic sequence of events leading to acute neuronal damage in the hippocampal slice as measured by (1) loss of the evoked CA1 field potential, (2) irreversible changes in light transmittance, (3) histopathology, and (4) lucifer yellow injection of single CA1 pyramidal neurons. Change in light transmittance (LT) through the submerged slice indirectly measures altered cell volume, both neuronal and glial. At 37 degrees C, a 1-min superfusion of 10 mu M domoate induced a prolonged reversible increase in LT, primarily in the dendritic regions of CA1 and dentate granule cells (GC), but not in the CA3 region. Spectral analysis (400-800 nm) revealed a wide-band transmittance increase, indicating cell swelling as a major source of the intrinsic signal. The evoked field potential recorded in the CA1 cell body region (PYR) was lost as LT peaked, but completely recovered upon return to the baseline LT level. Increasing domoate exposure to 10 min elicited a different and distinct LT sequence in CA1 and dentate regions. An initial LT increase in dendritic regions evolved in an irreversible decrease in LT. At the same time, LT irreversibly increased in cell body regions (CA1 PYR and GC) and the evoked field potential was irretrievably lost. Also, there was histological damage to cell body and dendritic regions of CA1 and granule cells. Injection of lucifer yellow into single CA1 neurons in slices displaying the irreversible LT sequence revealed extensive dendritic beading, whereas CA1 cells in control slices displayed a smoothly contoured arbor. Consistent with acute neuronal damage, the optical changes generated by domoate did not require extracellular Ca2+, and lowering the temperature protected the slice from irreversible damage to CA1 and GC regions. Although glial changes may also occur, we conclude that imaging light transmittance reveals dynamic and compartmentalized excitotoxic changes in neuronal volume. Beading of the dendritic arbor increases light scatter, thereby decreasing LT and highlighting damaged dendritic regions.
使用海鲜污染物软骨藻酸(一种AMPA/海人藻酸受体激动剂),我们证明了一系列独特的兴奋性毒性事件序列,这些事件导致海马切片中的急性神经元损伤,通过以下指标来衡量:(1)诱发的CA1场电位丧失,(2)透光率的不可逆变化,(3)组织病理学,以及(4)对单个CA1锥体神经元进行荧光黄注射。通过浸没切片的透光率(LT)变化间接测量神经元和神经胶质细胞体积的改变。在37℃下,用10μM软骨藻酸进行1分钟的灌流会导致LT长时间可逆性增加,主要发生在CA1和齿状颗粒细胞(GC)的树突区域,但CA3区域没有。光谱分析(400 - 800nm)显示宽带透光率增加,表明细胞肿胀是内在信号的主要来源。当LT达到峰值时,在CA1细胞体区域(PYR)记录的诱发场电位消失,但在LT恢复到基线水平时完全恢复。将软骨藻酸暴露时间增加到10分钟会在CA1和齿状区域引发不同且独特的LT序列。树突区域最初的LT增加演变为LT的不可逆下降。与此同时,细胞体区域(CA1 PYR和GC)的LT不可逆增加,诱发场电位也无法恢复地丧失。此外,CA1和颗粒细胞的细胞体和树突区域出现了组织学损伤。向显示不可逆LT序列的切片中的单个CA1神经元注射荧光黄,显示出广泛的树突串珠,而对照切片中的CA1细胞显示出轮廓平滑的树突。与急性神经元损伤一致,软骨藻酸产生的光学变化不需要细胞外Ca2+,降低温度可保护切片免受CA1和GC区域的不可逆损伤。虽然也可能发生神经胶质细胞变化,但我们得出结论,成像透光率揭示了神经元体积中动态且分区的兴奋性毒性变化。树突分支的串珠增加了光散射,从而降低LT并突出受损的树突区域。