Suppr超能文献

LSF and NTF-1 share a conserved DNA recognition motif yet require different oligomerization states to form a stable protein-DNA complex.

作者信息

Shirra M K, Hansen U

机构信息

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

J Biol Chem. 1998 Jul 24;273(30):19260-8. doi: 10.1074/jbc.273.30.19260.

Abstract

The mammalian transcription factor LSF (also known as CP2 and LBP-1c) binds as a homo-oligomer to directly repeated elements in viral and cellular promoters. LSF and the Drosophila transcription factor NTF-1 (also known as Elf-1 and Grainyhead) share a similar DNA binding region, which is unlike any established DNA binding motifs. However, we demonstrate that dimeric NTF-1 can bind an LSF half-site, whereas LSF cannot. To characterize further the DNA binding and oligomerization characteristics of LSF, truncation mutants were used to demonstrate that between 234 and 320 amino acids of LSF are required for high affinity DNA binding. Mixing of a truncation mutant with full-length LSF in a DNA binding assay established that the form of LSF that binds DNA is larger than a dimer. Unexpectedly, one C-terminal deletion derivative, partially defective in oligomerization properties, could occupy odd numbers of adjacent, tandem LSF half-sites, unlike full-length LSF. The numbers of DNA-protein complexes formed on multiple half-sites with this mutant indicated that LSF binds DNA as a tetramer, although cross-linking experiments confirmed a previous report concluding that LSF is primarily dimeric in solution. The DNA binding and oligomerization properties of LSF support models depicting novel mechanisms to prevent continual, adjacent binding by a protein that recognizes directly repeated DNA sequences.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验