Raftopoulos H, Ward M, Bank A
Department of Genetics and Development, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
Ann N Y Acad Sci. 1998 Jun 30;850:178-90. doi: 10.1111/j.1749-6632.1998.tb10474.x.
Insertion of a normally functioning human beta-globin gene into the hematopoietic stem cells (HSC) of patients with beta-thalassemia may be an effective approach to the therapy of this disorder. Safe, efficient gene transfer and long-term, high-level expression of the transferred human beta-globin gene in animal models are prerequisites for HSC somatic gene therapy. We have recently shown for the first time that, using a modified beta-globin retroviral vector in a mouse transplant model, long-term, high-level expression of a transferred human beta-globin gene is possible. The human beta-globin gene continues to be detected up to eight months post-transplantation of beta-globin-transduced hematopoietic cells into lethally irradiated mice. The transferred human beta-globin gene is detected in three of five mice surviving long-term (> 4 months) transplanted with bone marrow cells transduced with high-titer virus. The unrearranged 5.1 kb human beta-globin gene-containing provirus is seen by Southern blotting in two of these mice. More importantly, long-term expression of the transferred gene is seen in two mice at levels of 5% and 20% that of endogenous murine beta-globin. We document stem cell transduction by showing continued high-level expression of the human beta-globin gene in secondarily transplanted recipient mice. These results provide evidence of HSC transduction with a human beta-globin gene in animals and demonstrate that retroviral-mediated unrearranged human beta-globin gene transfer leads to a high level of human beta-globin gene expression in the long term for the first time. A gene therapy strategy may be a feasible therapeutic approach to the beta-thalassemias if consistent human beta-globin gene transfer and expression into HSC can be achieved.
将正常功能的人类β-珠蛋白基因导入β地中海贫血患者的造血干细胞(HSC)可能是治疗这种疾病的有效方法。在动物模型中实现安全、高效的基因转移以及转移的人类β-珠蛋白基因的长期、高水平表达是HSC体细胞基因治疗的前提条件。我们最近首次表明,在小鼠移植模型中使用改良的β-珠蛋白逆转录病毒载体,可以实现转移的人类β-珠蛋白基因的长期、高水平表达。将β-珠蛋白转导的造血细胞移植到经致死性照射的小鼠体内后,长达八个月仍可检测到人类β-珠蛋白基因。在用高滴度病毒转导的骨髓细胞进行长期移植(>4个月)的五只小鼠中,有三只检测到了转移的人类β-珠蛋白基因。通过Southern印迹法在其中两只小鼠中看到了未重排的含5.1 kb人类β-珠蛋白基因的原病毒。更重要的是,在两只小鼠中观察到转移基因的长期表达,其水平分别为内源性小鼠β-珠蛋白的5%和20%。我们通过在二次移植的受体小鼠中显示人类β-珠蛋白基因的持续高水平表达来证明干细胞转导。这些结果为动物体内人类β-珠蛋白基因转导至HSC提供了证据,并首次证明逆转录病毒介导的未重排人类β-珠蛋白基因转移可长期导致人类β-珠蛋白基因的高水平表达。如果能够实现人类β-珠蛋白基因向HSC的持续转移和表达,基因治疗策略可能是治疗β地中海贫血的一种可行方法。