Traub R D, Spruston N, Soltesz I, Konnerth A, Whittington M A, Jefferys G R
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.
Prog Neurobiol. 1998 Aug;55(6):563-75. doi: 10.1016/s0301-0082(98)00020-3.
Neurons are extraordinarily complicated devices, in which physical and chemical processes are intercoupled, in spatially non-uniform manner, over distances of millimeters or more, and over time scales of < 1 msec up to the lifetime of the animal. The fact that neuronal populations generating most brain activities of interest are very large-perhaps many millions of cells-makes the task of analysis seem hopeless. Yet, during at least some population activities, neuronal networks oscillate synchronously. The emergence of such oscillations generates precise temporal relationship between neuronal inputs and outputs, thus rendering tractable the analysis of network function at a cellular level. We illustrate this idea with a review of recent data and a network model of synchronized gamma frequency (> 20 Hz) oscillations in vitro, and discuss how these and other oscillations may relate to recent data on back-propagating, action potentials, dendritic Ca2+ transients, long-term potentiation and GABAA receptor-mediated synaptic potentials.
神经元是极其复杂的装置,其中物理和化学过程以空间不均匀的方式在毫米或更长的距离上,以及在小于1毫秒至动物寿命的时间尺度上相互耦合。产生大多数感兴趣的脑活动的神经元群体非常庞大——可能有数百万个细胞——这使得分析任务似乎毫无希望。然而,至少在某些群体活动期间,神经元网络会同步振荡。这种振荡的出现产生了神经元输入和输出之间精确的时间关系,从而使得在细胞水平上对网络功能的分析变得易于处理。我们通过回顾最近的数据以及体外同步伽马频率(>20赫兹)振荡的网络模型来说明这一观点,并讨论这些振荡以及其他振荡如何与最近关于反向传播、动作电位、树突状Ca2+瞬变、长时程增强和GABAA受体介导的突触电位的数据相关。