Suppr超能文献

A novel 4-methylumbelliferyl-beta-D-xyloside derivative, sulfate-O-3-xylosylbeta1-(4-methylumbelliferone), isolated from culture medium of human skin fibroblasts, and its role in methylumbelliferone-initiated glycosaminoglycan biosynthesis.

作者信息

Tazawa T, Takagaki K, Matsuya H, Nakamura T, Sasaki M, Endo M

机构信息

Department of Biochemistry and Second Department of Surgery, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan.

出版信息

Glycobiology. 1998 Sep;8(9):879-84. doi: 10.1093/glycob/8.9.879.

Abstract

Human skin fibroblasts were incubated in the presence of 4-methylumbelliferyl-beta-D-xyloside (Xyl-MU). The culture medium was recovered and Xyl-MU derivatives which were initiated by the Xyl-MU acting as a primer were purified. As a result, a novel Xyl-MU derivative was isolated, in addition to previously reported Xyl-MU derivatives such as glycosaminoglycan-MU, Gal-Gal-Xyl-MU, Gal-Xyl-MU, SA-Gal-Xyl-MU, Xyl-Xyl-MU, GlcA-Xyl-MU, and sulfate-GlcA-Xyl-MU. This Xyl-MU derivative was subjected to carbohydrate composition analysis, enzyme digestion, ion-spray mass spectrometric analysis, and Smith degradation. The results indicated that it was sulfate- O -3-Xyl-MU. When Xyl-MU was incubated with [35S]PAPS using a homogenate prepared from the same cultured skin fibroblasts, [35S]sulfate- O -3-Xyl-MU was produced. Moreover, when Xyl-MU was incubated with UDP-[3H]Gal, [3H]galactose was transferred to Xyl-MU, but when sulfate- O -3-Xyl-MU was incubated with UDP-[3H]Gal, [3H]galactose was not transferred. These results indicate that chain elongation from Xyl-MU is inhibited by sulfation of Xyl-MU, and that Xyl-MU sulfation is involved in the control of Xyl-MU-initiated glycosaminoglycan biosynthesis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验