Sastry S, Ross B M
Laboratory of Molecular Genetics, Box 174, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9111-6. doi: 10.1073/pnas.95.16.9111.
Recent models of RNA polymerase transcription complexes have invoked the idea that enzyme-nascent RNA contacts contribute to the stability of the complexes. Although much progress on this topic has been made with the multisubunit Escherichia coli RNA polymerase, there is a paucity of information regarding the structure of single-subunit phage RNA polymerase transcription complexes. Here, we photo-cross-linked the RNA in a T7 RNA polymerase transcription complex and mapped a major contact site between amino acid residues 144 and 168 and probably a minor contact between residues 1 and 93. These regions of the polymerase are proposed to interact with the emerging RNA during transcription because the 5' end of the RNA was cross-linked. The contacts are both ionic and nonionic (hydrophobic). The specific inhibitor of T7 transcription, T7 lysozyme, does not compete with T7 RNA polymerase for RNA cross-linking, implying that the RNA does not bind the lysozyme. However, lysozyme may act indirectly via a conformational change in the polymerase. In the current model, the DNA template lies in the polymerase cleft and the fingers subdomain may contact or maintain a template bubble, and a region in the N terminus forms a partly solvent-accessible binding channel for the emerging RNA.
近期的RNA聚合酶转录复合物模型提出了酶与新生RNA的接触有助于复合物稳定性的观点。尽管在多亚基大肠杆菌RNA聚合酶这一课题上已取得很大进展,但关于单亚基噬菌体RNA聚合酶转录复合物的结构信息却很匮乏。在此,我们对T7 RNA聚合酶转录复合物中的RNA进行了光交联,并确定了氨基酸残基144至168之间的一个主要接触位点,以及残基1至93之间可能存在的一个次要接触位点。由于RNA的5'端发生了交联,因此推测聚合酶的这些区域在转录过程中与新生RNA相互作用。这些接触既有离子型的,也有非离子型(疏水型)的。T7转录的特异性抑制剂T7溶菌酶并不与T7 RNA聚合酶竞争RNA交联,这意味着RNA不与溶菌酶结合。然而,溶菌酶可能通过聚合酶的构象变化间接发挥作用。在当前模型中,DNA模板位于聚合酶裂隙中,手指亚结构域可能接触或维持一个模板泡,并且N端的一个区域形成了一个部分可被溶剂接触的新生RNA结合通道。