Suppr超能文献

Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice.

作者信息

Rupalla K, Allegrini P R, Sauer D, Wiessner C

机构信息

Novartis Pharma Inc., Basel, Switzerland.

出版信息

Acta Neuropathol. 1998 Aug;96(2):172-8. doi: 10.1007/s004010050878.

Abstract

We investigated the temporal course of microglia activation in different brain regions after permanent middle cerebral artery (MCA) occlusion in mice and compared this microglia response with the appearance of apoptotic cells, Microglia activation and morphological changes of microglial cells were visualized using an immunohistochemical method with a polyclonal antibody recognizing the mouse CR3 complement receptor. Cells showing morphological and biochemical features of apoptosis were identified using the terminal deoxynucleotidyl transferase nick end-labeling (TUNEL) method and light microscopy. As early as 30 min after onset of MCA occlusion activated microglia with hypertrophic cell bodies and stout processes were detected in the periphery of the ischemic lesion as identified by diffusion-weighted magnetic resonance imaging. A wider distribution and a progressive increase in the number of activated microglia was found with increasing time. Only few TUNEL-positive cells with apoptotic features were observed within the lesion area at 6 h after onset of cerebral ischemia. From 12 h after MCA occlusion onward a tremendous increase in the number of TUNEL-positive cells was found. Within the thalamus from 24 h onward microglia cells with few processes, irregular morphology and fragmented appearance were detected. Microglia activation in the thalamus progressed up to 4 weeks after MCA occlusion, but had declined after 90 days. Neuronal degeneration in the thalamus as determined by anti-neuronal nuclei immunohistochemistry progressed from 6 days after MCA occlusion onward. Only a few TUNEL-positive cells were found in the thalamus. In summary, microglia activation both in the primary cortical lesion area and in the secondarily affected thalamus preceded the manifestation of tissue injury. These observations encourage further studies on the role of microglia in focal cerebral ischemia.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验